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Abstract
Emotions play an important role in human cognition and are commonly associated with perception, logical decision making,
human interaction, and intelligence. Emotion and stress detection is an emerging topic of interest and importance in the
research community. With the availability of portable, cheap, and reliable sensor devices, researchers are opting to use
physiological signals for emotion classification as they are more prone to human deception, as compared to audiovisual
signals. In recent years, deep neural networks have gained popularity and have inspired new ideas for emotion recognition
basedon electroencephalogram (EEG) signals.Recently,widespreaduse of transformer-based architectures has beenobserved,
providing state-of-the-art results in several domains, fromnatural language processing to computer vision, and object detection.
In this work, we investigate the effectiveness and accuracy of a novel transformer-based architecture, called perceiver, which
claims to be able to handle inputs from any modality, be it an image, audio, or video. We utilize the perceiver architecture
on raw EEG signals taken from one of the most widely used publicly available EEG-based emotion recognition datasets, i.e.,
DEAP, and compare its results with some of the best performing models in the domain.
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1 Introduction

Emotion plays an important role in our everyday decision-
making and social interaction as it influences the perception
of human surroundings (Wu et al. 2020). In general, there
are two different ways to recognize emotion. One is through
behavioral signals, such as speech (Petrushin 2000), facial
expressions (Anderson andMcOwan 2006), gestures (Soley-
mani et al. 2012), and body posture, to name a few, to
construct models. This approach collects data in a nonin-
vasive way but it is challenging to obtain the correct emotion
if the person conceals her true emotion. The other method is
to use physiological signals such as skin conductivity, heart
rate, respiration, and EEG, to construct models and classify
emotions. As compared to behavioral signals, physiological
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signals are more spontaneous and difficult to conceal (Yang
et al. 2018).

Out of all the physiological signals, the most widely used
physiological signal in brain imaging technologies is the elec-
troencephalography (EEG) (Liu et al. 2021; Tao et al. 2020;
Yin et al. 2021; Halim and Rehan 2020), which measures
human brain activity directly. EEG signals are collected by
placing several electrodes on the surface of the human head.
Recently,many researchers have usedEEGsignals for human
emotion recognition, achieving very convincing results and
proving the effectiveness of EEG signals for the purposes of
emotion recognition, among other things.

Because of the powerful ability of automatic feature
extraction, deep learning algorithms (Muhammad and Halim
2016; Uzma and Halim 2021; Halim et al. 2017) have
achieved noteworthy performance in the field of computer
vision (Lecun et al. 1998; He et al. 2016), natural language
processing (Liu et al. 2019; Collobert and Weston 2008),
speech recognition (Yao et al. 2020), object detection (Liu
et al. 2021), as well as EEG-based emotion recognition
(Zhang et al. 2021;Yin et al. 2021;Xiao et al. 2021;Ding et al.
2021; Deng et al. 2021). Many models have been applied in
the past for EEG-based emotion recognition, including but
not limited to, convolutional neural networks (CNNs) (Yang
et al. 2018; Tripathi et al. 2017), recurrent neural networks
(RNNs) (Zhang et al. 2019), deep belief networks (DBNs)
(Zheng et al. 2014), graph convolutional neural networks
(GCNNs) (Song et al. 2020; Zhang et al. 2021), and cap-
sule networks (CapsNet) (Chao et al. 2019; Liu et al. 2020),
to name a few. While many of them use feature extraction
techniques (Nawaz et al. 2020) to extract statistical, power,
frequency domain, entropy, or wavelet energy-based features
to train theirmodels, somehave also utilized rawEEGsignals
as an input to their deep learning models.

Convolutional neural networks and recurrent neural net-
works have seen the most widespread use in the field of EEG
emotion recognition in the past decade; however, recently,
capsule networks (Chao et al. 2019; Liu et al. 2020), and
graph neural networks (Song et al. 2020; Zhang et al. 2021)
are also being used and providing state-of-the-art results. An
increasing trend in the use of attention mechanisms in spa-
tial, temporal, and spectral domains to extract more relevant
information from the EEG signals is also observed.

Recently, transformers have emerged in the field of deep
learning with their utility in natural language processing
and computer vision. Models like VisionTransformers (Yuan
et al. 2021), GPT-3 (Brown et al. 2020), and DALLE
(Ramesh et al. 2021) are outperforming previous state-of-
the-artmethods and attaining better results. For EEGemotion
classification, the use of transformers has been overlooked
in the past, mainly because the previous transformer-based
modelswere designed specifically for their respectivemodal-
ities.

In the current work, we evaluate a recently proposed
transformer-based architecture, perceiver (Jaegle et al. 2021),
on a widely used publicly available dataset in the domain of
EEG-based emotion recognition, DEAP. Perceiver can take
inputs from different modalities, i.e., images, video, audio,
3D mesh points, etc. We preprocess EEG signals and map
them to 2D matrix representation and then use perceiver to
classify emotions from the raw EEG signals. Additionally,
we compare our results with other baseline and state-of-the-
art methods.

This paper is organized as follows. In Sect. 2, we pro-
vide the literature review, and in Sect. 3, the perceiver model
is described. Section 4 illustrates experiment settings, train-
ing strategy, and preprocessing on DEAP datasets. Section 5
gives the discussion of the experimental results. Finally, we
conclude this work in Sect. 7.

2 Literature review

In this section, we will briefly take a look at some of the
methods and studies that are used for emotion classification.
We will only focus on those studies that use raw EEG signals
for training their models, as opposed to those that employ
manual feature extraction techniques to train their models.
Table 1 shows the different models used in different studies
and their reported accuracies.

Alhagry et al. (2017) used LSTM-RNN to learn fea-
tures from raw EEG signals and then used a dense layer
in the end for classification, achieving 85.45%, 85.65%, and
87.99% accuracies using a fourfold cross-validation strategy
on valence, arousal, and liking, respectively.

Wang et al. (2018) proposed EmotioNet, a 3DCNN-based
architecture capable of recognizing emotions using raw EEG
signals. It had an accuracy of 72.1% and 73.1% for valence
and arousal on the DEAP dataset, respectively.

Zhang et al. (2019) used a specifically designed convolu-
tional network to extract spatiotemporal information and then
extracted the attentive temporal dynamics from raw EEG
temporal slices for emotion classification. Using the same
preprocessing and training strategy as ourselves, CRAM
achieved an accuracy of 87.09% for valence and 84.46%
for arousal on DEAP.

Chen et al. (2019) mirrored the hierarchical structure of
EEG signals by introducing the attention mechanism com-
bined with the hierarchical bidirectional gated recurrent unit
(GRU) network and reported accuracies of 67.9% for valence
and 66.5% for arousal on the DEAP dataset.

Tao et al. (2020) proposed ACRNN, which integrates
channel-wise attention into a CNN that extracts spatial
attentive features and channel attentive features. They also
integrated extended self-attention intoRNN to extract tempo-
ral attentive information, resulting in the reported accuracies
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Table 1 Details of several
reported studies on DEAP
dataset

Studies Models Year Accuracy (%)

Valence Arousal Dominance Liking

Tao et al. (2020) DT 2020 75.95 78.18 – –

Wang et al. (2018) EmotioNet 2018 72.1 73.1 – –

Tao et al. (2020) SVM 2020 89.33 89.99 – –

Zhang et al. (2019) CRAM 2019 87.09 84.46 – –

Alhagry et al. (2017) LSTM-RNN 2017 85.45 85.65 – 87.99

Chen et al. (2019) H-ATT-BGRU 2019 67.9 66.5 – –

Tao et al. (2020) ACRNN 2020 93.72 93.38 – –

Liu et al. (2020) MLF-CapsNet 2020 97.97 98.31 98.32 –

Fig. 1 Without making any domain-specific assumptions, the per-
ceiver architecture can scale to high-dimensional inputs such as images,
videos, and audio. Using cross-attention module, the perceiver projects

a high-dimensional input byte array to a fixed-dimensional latent array
where M � N and then processes it using a stack of transformer mod-
ules in low-dimensional latent space

of 93.72% and 93.38% for valence and arousal dimensions.
Using the same preprocessing and training strategy as out-
lined in the present work, they reported the accuracies of
75.95% and 78.18% for valence and arousal using Decision
Trees (DT), and 89.33% and 89.99% for valence and arousal
using Support Vector Machines (SVM) on raw EEG signals
in the DEAP dataset.

Liu et al. (2020) introduced MLF-CapsNet, which uses
multi-level features extracted from different convolution lay-
ers to form primary capsules and reduced the number of
parameters required by adding a bottleneck layer, result-
ing in reduced computation time. They reported accuracy of
97.97%, 98.31%, and 98.32% on valence, arousal, and dom-
inance, respectively, using raw EEG signals from the DEAP
dataset.

3 Method

For the past decade, ConvNets (Lecun et al. 1998) have been
the dominant family of architectures in the field of deep learn-
ing because of their good performance and scalability. Due to
their local type of computation− convolutions, they can con-
veniently handle high-resolution images. However, we are

seeing widespread usage of the self-attention-based model,
e.g., transformers, in language processing, image classifica-
tion, and object detection. Although transformers are quite
flexible and have shown amazing results, they scale poorly
with the input size.

Perceiver. Perceiver, introduced in Jaegle et al. (2021),
tries to make the transformers more scalable. Their model is
built on twomain architectural components: a cross-attention
module and a transformer block, as shown in Fig. 1. The
cross-attention module maps a byte array (input array) and a
latent array, which is chosen to bemuch smaller than the byte
array. The model alternates the application of cross-attention
and transformer modules. The scalability issue of transform-
ers is solved by projecting a high-dimensional input byte
array through a lower-dimensional attentional bottleneck,
before processing it with a stack of transformer modules.

To mitigate the potential information loss caused by the
mapping of the byte array into a latent array, an iterative
attentional approach is followed. The model is structured
with multiple byte-attend layers, allowing the latent array
to iteratively extract the required information from the byte
array.
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Table 2 Description of DEAP dataset

Materials Setup

Number of participants 32

Number of videos 40

Recording signals 32 EEG channels + 8 other peripheral channels

Valence Indicator of pleasantness Float between 1 and 9

Rating scales Arousal Intensity of the emotion Float between 1 and 9

Dominance Feeling of being in control of the emotion Float between 1 and 9

Liking Liking of the video Float between 1 and 9

Fig. 2 2D Spatial mapping

4 Experiment

This paper focuses on the application of transformer architec-
ture, namely the perceiver architecture, on raw EEG signals
for emotion classification. In this section, we firstly introduce
a widely used EEG dataset for emotion classification. Then,
we describe the preprocessing, and experiment settings. We
also describe the baseline models that were used for the com-
parison. Finally, the results on the datasets are reported and
discussed.

4.1 DEAP dataset

In thiswork,we use theDEAPdataset (Koelstra et al. 2012), a
multimodal dataset created by Koelstra et al., which is pub-
licly available and many researchers have performed their
analysis on it. Table 2 gives a brief description of the dataset.

The DEAP dataset collected EEG and peripheral signals
from 32 subjects (16 males and 16 females, age ranged from
19 to 37, age mean=26.9). The EEG data were captured at
a sampling rate of 512 Hz using 32 electrodes, while the
subjects were watching 41 minutes long music videos care-
fully selected to elicit specific emotions. After watching each
video, participants assessed the videos at different levels

ranging from 1 (low) to 9 (high), along four dimensions,
valence, arousal, dominance, and liking. Valence indicates
pleasantness, while arousal is a measure of the intensity of
the emotion varying from unexcited to excited and domi-
nance represents the feeling of being in control of the emotion
(Koelstra et al. 2012). Liking indicates the participant’s like-
ness of the video. Each EEG signal contains a 3s baseline
signal which was recorded in a relaxed state and a 60s exper-
imental signal which was recorded under-stimulation.

Different researchers have used different threshold values
for valence, arousal, dominance, and liking. In this work,
we use the middle of the nine-point rating to generate two
classes. When the rating is less than 5, we label it as low, and
when the label is greater than or equal to 5, we label it as high.
Another thing to keep in consideration is that the dominance
scores of all the 40 experimental signals of the 27th subject
are greater than 5, which results in the dominance labels
with only one category, i.e., high. Therefore, we exclude the
samples of the 27th subject to conduct experiments on the
dominance as the model trained by such samples would be
invalid.

The DEAP dataset also provides a preprocessed version,
andweused the preprocessed version in the article. In the pre-
processed version, EEG signals are down-sampled to 128Hz,
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Table 3 Accuracy of subjects in DEAP

Subject Valence Arousal Dominance Liking

1 91.19 90.81 92.79 99.52

2 86.93 89.42 90.91 87.77

3 94.98 96.78 94.44 98.39

4 85.41 85.63 89.42 85.97

5 90.80 91.93 91.64 90.56

6 90.01 86.71 87.61 91.93

7 91.22 88.18 86.63 98.19

8 91.42 91.91 92.15 97.27

9 88.93 87.65 89.11 93.63

10 94.54 93.08 93.97 95.56

11 82.93 85.09 86.91 83.95

12 88.29 94.78 88.42 87.72

13 84.40 94.27 83.37 83.39

14 86.62 89.97 86.59 90.32

15 91.52 94.47 91.82 93.67

16 93.97 93.35 92.37 93.40

17 83.39 84.44 95.14 85.07

18 92.65 92.20 96.11 90.85

19 91.53 91.21 89.64 92.53

20 92.69 95.51 91.45 95.64

21 92.00 94.82 91.01 91.69

22 94.31 95.89 95.79 94.03

23 92.49 94.11 95.32 92.43

24 90.61 96.01 90.05 88.71

25 89.71 91.89 98.92 89.65

26 91.72 89.09 89.06 95.52

27 94.99 92.95 − 97.39

28 88.67 90.13 90.87 89.66

29 92.01 93.25 91.28 90.91

30 94.56 92.88 94.61 93.83

31 88.55 87.15 89.13 93.08

32 90.19 92.01 97.96 90.49

Average 90.41 91.49 91.43 91.96

Median 91.20 91.97 91.28 92.18

Std. 3.30 3.36 3.56 4.17

Min 82.93 84.44 83.37 83.39

Max 94.99 96.78 98.92 99.52

and a band-pass frequency filter from4.0−45.0Hz is applied
to remove the artifacts.

4.2 Preprocessing

As deep learning models require sufficient data to obtain
meaningful results, we segment each experimental signal
along the temporal dimension. A 1s sliding window is used
to segment an experimental signal into 60 non-overlapping

segments, each containing 128 sampling points. As a result,
we obtain 2400 (40 trails × 60 segments) EEG samples for
each subject, and each sample is a 32 × 128 matrix.

Although many researchers have used carefully extracted
features along spatial, spectral, temporal, and statistical
dimensions, in this analysis, we will only use raw EEG sig-
nals. For the sake of fairness, we also exclude those papers
from the comparison which use manual feature extraction
strategies to train their models.

As the perceiver model can take input in any modality, we
experimented with two input sizes, one where each sample
out of 2400 samples is of shape 32 × 128, meaning all the
electrode values were given as a 1D vector, and one where
wemapped the electrodes according to their spatial locations
in the international 10-20 system, as shown in Fig. 2.

4.3 Experiment settings

We use a tenfold cross-validation strategy to evaluate the
performance of the perceiver on raw EEG signals from the
DEAP dataset, as has been done in many of the previous
studies (Liu et al. 2020; Tao et al. 2020; Wang et al. 2018;
Zhang et al. 2019). Even though this results in an increase in
the training time, this strategy makes use of all the available
dataset for training themodel, and it also gives amore reliable
accuracy. Typically, tenfold cross-validation divides data into
10 equal data subsets where one subset is used as the test set,
and the other nine subsets form the training set. This process
is repeated 10 times. We take the average accuracy of the
tenfold cross-validation as the result of one subject, and then
the average accuracy of all the subjects as the final accuracy.
We used the Adam optimizer to minimize the margin loss
function. We set the learning rate, batch size, and the number
of epochs to 10−4, 16, and 8, respectively. For the perceiver
model, we set its depth to 6, the number of latent dimensions
to 512, the drop-out value of attention and feed forward layer
to 0.25. We did not use any weight sharing between cross-
attention and transformer block modules.

5 Results

After training the perceiver model on raw EEG signals
from the DEAP dataset using a tenfold training strategy,
for each label dimension, i.e., valence, arousal, domi-
nance, and liking, we obtained the average accuracy of
90.41%, 91.49%, 91.43% and, 91.96% respectively. These
results are subject-dependent, meaning that the model was
trained on a single subject where some trials were used as
training set and the remaining trials as test set, as compared
to subject-independent or cross-subject, where the model is
trained on a subset of subjects and evaluated on the remain-
ing subjects. Table 3 shows the individual accuracies for
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Table 4 Comparison with
several reported studies on
DEAP dataset

Studies Models Year Accuracy (%)

Valence Arousal Dominance Liking

Tao et al. (2020) DT 2020 75.95 78.18 – –

Wang et al. (2018) EmotioNet 2018 72.1 73.1 – –

Tao et al. (2020) SVM 2020 89.33 89.99 – –

Zhang et al. (2019) CRAM 2019 87.09 84.46 – –

Alhagry et al. (2017) LSTM-RNN 2017 85.45 85.65 – 87.99

Chen et al. (2019) H-ATT-BGRU 2019 67.9 66.5 – –

Tao et al. (2020) ACRNN 2020 93.72 93.38 – –

Liu et al. (2020) MLF-CapsNet 2020 97.97 98.31 98.32 –

Perceiver (proposed) 2021 90.41 91.49 91.43 91.96

valence, arousal, dominance, and liking for all 32 subjects
in the DEAP dataset. The results shown here are obtained
from the DEAP preprocessed dataset where the EEG signals
weremapped into their respective 2D spatial representations.
We also tried the 1D signal representation but it performed
poorly as compared to the 2D representation, signifying the
importance of 2D mapping and the ability of the model to
learn from spatial dimensions of the EEG signal.

For a fair comparison of the perceiver model with other
baseline and state-of-the-art methods for EEG emotion
recognition, we chose the models where the preprocessing
and training strategy was similar to ours, and the model used
raw EEG signals as input, instead of manually extracted sta-
tistical, temporal, or frequency-based features.

As given in Table 4, perceiver performs better than all
the other models with an exception of ACRNN and MLF-
CapsNet.

6 Discussion

Our proposed model, perceiver, performs better than most of
the previous methods, but it also reports lower accuracies
as compared to the ACRNN(Tao et al. 2020) and MLF-
CapsNet(Liu et al. 2020) models.

A major reason behind the better performance of our
model as compared to previous state-of-the-art approaches
like CNN, LSTM, SVM, DT, etc., is that our model uses
transformer architecture which has proven to be more gen-
eralizable and which is able to learn relevant features across
long sequences, as evident from their success in com-
puter vision, natural language processing, and many other
domains. As EEG signals can be treated as a long sequence
of numerical values, a transformer-based architecture, which
utilizes self-attention mechanism, is a more suitable choice
to attend to those features that are relevant and responsible
for a certain emotional state. This increased generalizabil-

ity and the ability to learn long-term dependencies result in
higher accuracies for the perceiver model.

Even though our model gives better accuracies as com-
pared to the previous baseline and state-of-the-art methods,
it is not able to beat ACRNN (Tao et al. 2020) and MLF-
CapsNet (Liu et al. 2020) models. One of the main reasons
behind this is that theACRNNandMLF-CapsNetmodels are
specifically designed for EEG dataset and emotion classifi-
cation, while perceiver is a general architecture that can be
used for images, audio, video, and further modalities. More-
over, capsule networks (Sabour et al. 2017) have been shown
to work really well with EEG data (Chao et al. 2019; Liu
et al. 2020; Zhang and Etemad 2021) because of the small
data size and improved representational capacity of capsule
networks.

7 Conclusion

This work presented an analysis of using a transformer-based
architecture, perceiver, for emotion classification using raw
EEG signals. We performed experimentation on the DEAP
dataset,which is a publicly availableEEGdataset for emotion
classification, and compared its results with other baseline
and state-of-the-art methods. Because of its generalizability
and multimodal input accommodation, perceiver performed
fairly well-compared to widely used baseline methods from
previous years. However, it was not able to beat two methods
specifically designed to work with EEG and emotion clas-
sification. This study shows the potential impact of using
transformers in the domain of EEG emotion recognition. In
the future, more specialized transformer-based architectures
can be specifically designed to work with EEG data for emo-
tion recognition.
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