
Journal of Computational Science 51 (2021) 101281

Available online 23 January 2021
1877-7503/© 2021 Elsevier B.V. All rights reserved.

Clustering of graphs using pseudo-guided random walk

Zahid Halim a,*, Hussain Mahmood Sargana b, Aadam a, Uzma a, Muhammad Waqas a,c

a The Machine Intelligence Research Group (MInG), Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology,
Topi, Pakistan
b Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, RYK, Pakistan
c Engineering Research Center of Intelligent Perception and Autonomous Control, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124,
PR China

A R T I C L E I N F O

Keywords:
Graph clustering
Random walk
Efficient clustering
Community detection

A B S T R A C T

Clustering is an unsupervised learning task that models data as coherent groups. Multiple approaches have been
proposed in the past to cluster large volumes of data. Graphs provide a logical mapping of many real-world
datasets rich enough to reflect various peculiarities of numerous domains. Apart from k-means, k-medoid, and
other well-known clustering algorithms, utilization of random walk-based approaches to cluster data is a
prominent area of data mining research. Markov clustering algorithm and limited random walk-based clustering
are the prominent techniques that utilize the concept of random walk. The main goal of this work is to address
the task of clustering graphs using an efficient random walk-based method. A novel walk approach in a graph is
presented here that determines the weight of the edges and the degree of the nodes. This information is utilized
by the pseudo-guidance model to guide the random walk procedure. This work introduces the friends-of-friends
concept during the random walk process so that the edges’ weights are determined utilizing an inclusive cri-
terion. This concept enables a random walk to be initiated from the highest degree node. The random walk
continues until the walking agent cannot find any unvisited neighbor(s). The agent walks to its neighbors if it
finds a weight of one or more, otherwise the agent’s stopping criteria is met. The nodes visited in this walk form a
cluster. Once a walk comes to halt, the visited nodes are removed from the original graph and the next walk starts
in the remaining graph. This process continues until all nodes of the graph are traversed. The focus of this work
remains random walk-based clustering of graphs. The proposed approach is evaluated using 18 real-world
benchmark datasets utilizing six cluster validity indices, namely Davies-Bouldin index (DBI), Dunn index (DI),
Silhouette coefficient (SC), Calinski-Harabasz index (CHI), modularity index, and normalized cut. This proposal
is compared with seven closely related approaches from the same domain, namely, limited random walk,
pairwise clustering, personalized page rank clustering, GAKH (genetic algorithm krill herd) graph clustering,
mixing time of random walks, density-based clustering of large probabilistic graphs, and Walktrap. Experiments
suggest better performance of this work based on the evaluation metrics.

1. Introduction

Graphs provide a fundamental area of research in computing and
mathematics having its history spanning over a century [1]. A graph
typically consists of nodes representing independent entities and edges
indicating the connectivity between them. There are many different
types of graph with their specifications and provisions [2]. In the present
age of technology, data is a fundamental asset for any organization. To
reveal the best results for information processing or to have business
insights using unsupervised/semi-supervised data, one has to perform
pattern recognition. Two key tasks of pattern recognition include:

classification and clustering. Where, classification is a supervised
learning task and clustering being unsupervised [3]. The supervised
learning utilizes training data for learning and later classifies unknown
objects into the predefined categories. Whereas, the process of finding
similar groups in the data with respect to some common features is
called clustering. This comes under the domain of unsupervised
learning. Clustering is different from classification majorly because of
the lack of prior knowledge about the classes hidden/available in the
data. Graphs can be treated as hierarchical structures connecting nodes
through edges. Finding useful patterns or similar communities in a graph
data is therefore referred to as graph clustering. Such clustering is to

* Corresponding author.
E-mail address: zahid.halim@giki.edu.pk (Z. Halim).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2020.101281
Received 7 December 2018; Received in revised form 17 April 2020; Accepted 21 December 2020

mailto:zahid.halim@giki.edu.pk
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2020.101281
https://doi.org/10.1016/j.jocs.2020.101281
https://doi.org/10.1016/j.jocs.2020.101281
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2020.101281&domain=pdf

Journal of Computational Science 51 (2021) 101281

2

cover only those nodes/edges which have the maximum relationship
within a subgraph and a few inter-cluster connections. Graph-based data
or ordinary data represented as a graph provide an essential digital
representation for the algorithms to facilitate information processing.

In a transactional database system, the clustering result can be used
to collect the relevant queries in a data dictionary for efficient infor-
mation retrieval in the future. Previously, such work has been done for
databases. For instance, Diwen et al. [4] proposed a solution to store the
queries in a tree-like structure. Other researchers have proposed
graph-based concepts to identify shortest paths. For the domain of bio-
informatics, clustering of the graphs is done to identify gene expression
data, protein-protein interaction, epidemic expansion, and viral
spreading. For example, Enright et al. [5] worked on SIR (susceptible →
infective → removed) disease. It is an epidemic disease found in dense
population and has several types of infections. Their work uses graph
clustering to identify epidemic disease with cluster-like structure. An
electroencephalogram (EEG) is a brain signal captured using an EEG cap
to observe disorders of brain’s electrical pulse. Graph clustering can also
be done in such type of data to find neural structures. Clustering the data
extracted from social networking websites can help to identify the
voting trend in elections, influence, and popularity of a person with
maximum node degree. Apart from social networks, clustering can
identify the latest trends in the stock market as well.

Previous works on clustering using random walk have overlooked
the aspect of “guiding” the walk such that it forms better quality clusters
without compromising on the randomness feature. Past approaches
either guide the random walker to an extent that it totally eliminates the
underlying randomness of the process or the procedure is completed
unguided. All this forces the methods to stuck in a local optimum.
Additionally, the previous methods start the clustering from an arbitrary
node in the graph. This has the limitation of prolonging the clustering
process in reaching a better clustering formation. An initial calculated
guess to start the cluster formation will not only result in reducing
cluster formation time but will also enable to form clusters with higher
cohesion. The current proposal addresses these limitations of the past
works. Keeping in view the abovementioned domains where clustering
has been utilized previously, this work focus on developing a clustering
approach that utilizes graphs for data representation. Since clustering is
an unsupervised task, the key challenge here is to produce clusters
having strong intra-cluster similarity and higher inter-cluster dissimi-
larity. For the graph-based clustering approach, this work focuses on the
formation of coherent groups through random walk. This is done by
introducing the novel friends-of-friends concept as a guiding principal
for the random walk to explore neighbours. Although various proposals
can be found in the past that utilizes graphs to cluster the data, however,
random walk is a technique yet to be fully explored for this task. Finding
clusters through random walk has been previously done by Enright et al.
[5] as Markov clustering algorithm and through limited random walk in
Zhang et al. [6]. This work presents a novel approach in terms of
neighbourhood exploration. The randomness in the walk is minimized
by guiding the process towards more suited nodes to be explored.
However, it is not completely eliminated. The proposed approach as-
signs higher significance to the graph node having maximum connec-
tivity. This enables the algorithm to start clustering with the most
influential node in the community. Since clustering is unsupervised,
each clustering algorithm has its pros and cons. Random walk-based
clustering can be efficient in terms of randomly moving to its neigh-
bors by examining their importance. The walking agent would move to
its neighbour based on a probability, inflation, and modulation. There
can be other factors incorporated into the approach to form better
clusters. For instance, the additional feature adopted here is the
friends-of-friends concept to grow the clusters using a pseudo-guidance
mechanism. At the core of the current proposal is the friends-of-friends
concept to guide the random walk process. Traditionally, to form clus-
ters via a random walk, a node is arbitrarily added to the existing group
based on it being a neighbor. However, the complete randomness of the

process may cause a less suitable node to be added to the cluster. The key
intuition here is to not only consider the existing edge (and its weight)
between the cluster and the node under consideration for joining the
group, but also to identify how many common neighbors exist between
the two. Consider the cluster Ci and two nodes nj and nj+1 to be delib-
erated for inclusion in Ci. If the sum of edge weights between the nodes
under consideration is same for nj and nj+1, however nj has more com-
mon neighbors (friends-of-friends) within Ci than nj+1, then the node nj
is more suitable (based on commonalities) to be added to the cluster Ci in
comparison to the node nj+1.

1.1. Key contributions

This work presents a random walk-based clustering methods for the
data representable as a graph. The random walk procedure is directed by
a pseudo-guidance procedure. The procedure guides the random walker
to consider visiting densely connected nodes first. The densely con-
nected portions of the graph are identified based on the number of
common neighbors between two nodes instead of relying on their raw
degrees. The proposal is evaluated using 18 real-world benchmark
datasets utilizing six cluster validity indices, namely Davies-Bouldin
index (DBI), Dunn index (DI), Silhouette coefficient (SC), Calinski-
Harabasz index (CHI), modularity index, and normalized cut. It is
compared with seven closely related approaches from the same domain,
namely, limited random walk, pairwise clustering, personalized page
rank clustering, GAKH (genetic algorithm krill herd) graph clustering,
mixing time of random walks, density-based clustering of large proba-
bilistic graphs, and Walktrap. The approach proposed in this work can be
utilized to identify clusters in diversified fields of study. Random walk-
based clustering is a suitable solution for determining the best clusters in
the data transformed into a graph. For example, this work can be used to
find clusters in the data dictionary of production databases where
queries are stored. A cluster can be formed by identifying the queries on
the database. This is helpful when next time one tries to write the same
query, it would be the part of same database which was loaded previ-
ously. In brief, the key contributions of this work include:

• Utilizing graphs to efficiently store and cluster the data
• A “guided” random walk-based approach to extract clusters
• Incorporation of the friends-of-friends concept to guide the clus-

tering process towards better nodes to be explored
• Incorporating the commonality concept based on mutual friends to

form clusters instead of relying on the raw node degree
• Avoiding any biases caused by nodes with a higher degree to form

clusters

The rest of the paper is organized as follows. Section 2 covers the
related work on clustering graphs. The section focuses on the clustering
methods utilizing random walk. It also lists some related basic notions.
Section 3 presents the proposed solution and explains its working pro-
cedure. Section 4 lists the detailed experiments and obtained results. All
experiments are performed using benchmark datasets obtained from the
UCI machine learning repository1 and other such venues. Section 5
presents the statistical analysis of the obtained results. Discussion on the
obtained results is covered in Section 6. The section also lists a few
limitations of this work. Finally, Section 7 concludes this work with a
few of the future directions.

2. Related work

Clustering is a key data mining/machine learning task forming bases
for many higher-level objectives to be achieved by the modern
computing systems. Various algorithms have been proposed for

1 https://archive.ics.uci.edu/ml/index.php

Z. Halim et al.

https://archive.ics.uci.edu/ml/index.php

Journal of Computational Science 51 (2021) 101281

3

clustering data. Natural clusters are formed by the existence of common
characteristics between members of the same group. Considering
graphs, the most related links or edges will likely make a cluster of the
same type. Various proposals have been presented in the past to cluster
data. This section covers clustering approaches for graphs specially
those utilizing the random walk. Recently, many approaches have been
proposed to implement random walked-based clustering techniques
[7–10]. Diversified works have been done for random walk due to the
fact that the walking agent, at times, travels beyond the boundaries of
the core neighbourhood. A typical random walk starting from a seed
node is more likely to stay in the vicinity of the seed vertex forming a
coherent group. Due to this reason, the random walk may work well for a
typical clustering problem.

2.1. Clustering using random walk

Harel et al. [11] introduce a random walk-based technique in their
work. They propose two operators to change the edge weight in such a
way that the strength of inter-cluster edges is reduced and the
intra-cluster edges increases. Iteratively, the inter-cluster edge weight
decreases approaching to zero to differentiate them with other clusters.
Their technique is somewhat similar to the work in Girvan et al. [12]
where edge weight between two nodes is utilized for grouping.

Zhou et al. [13] uses random walk between two nodes to group the
data represented as a graph. They find the distance dij between node i
and node j as an average distance between two nodes in terms of number
of edges connecting them. The nodes in the same cluster will be closely
related to each other. The authors define two types of vertices in a
cluster known as global attractor and local attractor. The global attractors
are defined as the closely related neighbours, i.e., anywhere in the
closest domain of vertex i. Whereas, the local attractors are defined as the
immediate neighbours of vertex i. Using this concept, two types of
communities are extracted each containing subgraphs of their own. The
work in [14] adopts biased random walker technique. This work finds
biasness as the walking agent should visit high degree neighbours
frequently. For this, a proximity index is used to find the biased neigh-
bouring node. The approach can be classified as a hierarchical clustering
method. Hagen et al. [15] uses random walk to cluster circuits in a
very-large-scale integration (VLSI) design problem through random
walk. They utilize the concept of cycles to find clusters. The worst case
time complexity of their solution is O(n3) whereas, the space complexity
is O(n2).

Pons et al. [16] uses a different measuring method for computing
distance between nodes through random walk. The distance is calcu-
lated between two nodes using a fixed number of steps utilizing the
probability matrix. The number of steps is large enough to traverse the
substantial portion of the graph. However, for a larger number of steps,
the stopping criterion is met. Hu et al. [17] finds the neighbour vertex
through a signaling method which resembles diffusion. Initially, on the
first move, source vertex transmits unit signal to its neighbours. Next,
these neighbours send many unit signals to their neighbours. This pro-
cess continues until a threshold is reached. The procedure is repeated
from the next node by considering the current node as the source.
Weinan et al. [18,19] uses Markova chain method to describe a random
walk procedure on the subgraph. The vertices of this subgraph represent
the clusters in the original graph. This process gives a suitable deter-
mining method to extract coherent clusters. Van Dongen et al. [20] also
uses the Markov clustering algorithm to find clusters. Their method finds
movement of the random walker. The Markov clustering algorithm is the
baseline approach that utilizes random walk through a probability ma-
trix for clustering. Probability matrix is obtained by multiplying the
adjacency matrix with the inverse degree matrix. The sum of each col-
umn of the transition matrix is computed using Eq. (1).

P = A DG− 1 (1)

Where, P is the transition probability matrix, A is the adjacency matrix,
and DG is the degree matrix. Degree matrix is the diagonal matrix with
degree of each vertex mentioned at the diagonal. The probability matrix
sums-up all columns to one.

Markov clustering algorithm (MCL) [6] is based on the idea of
Markov chain, however, here transition is done with probability matrix
only. Graph clustering using random walk is flanked by this algorithm. A
walk starts from seed vertex and moves to its neighbour if there is a
higher probability between them. Markov clustering algorithm repli-
cates the stream within the cluster. It uses inflation and normalization to
increase the stream within one cluster and reduces the flow between
different clusters. MCL procedure is time-inhomogeneous for which the
transition matrix varies over time. The MCL algorithm starts the random
walk from all vertices simultaneously, i.e., there are n agents walking in
the graph at the same time. The walk can only continue after all agents
have completed a walking step and the resulting probability matrix has
been inflated and normalized. Each iteration of the algorithm has two
steps, one is expansion and the other one is inflation. Expansion is uti-
lized for computing probability and inflation is used for the weight
enhancement between pairs of nodes.

Zhang et al. [6] uses limited random walk (LRW) algorithm utilizing
the concepts presented in [20]. Inflation and normalization are applied
during each step of the random walk. Applying inflation operator to the
matrix causes it to increase the existing small differences. Their work is
time-homogeneous Markov chain procedure. They start the walk from a
single seed vertex and perform inflation on the probability values of
each walking step rather than from many different vertices like MCL.
The approach has an advantage that it eliminates the need of multiple
walks since a single seed vertex is sufficient to explore the vertices
within its vicinity. This procedure is suitable for local graph clustering
problems. However, if there is a need to start multiple walks, these can
be computed by the parallel computing paradigm. He et al. [21] extend
the work presented in [22] by fusing it with the k-means algorithm.
Meila et al. and Shi et al. [23] perform experiments to cut the graph and
use transition probabilities and the stationary distribution for a walking
agent to explore it. Authors link the mathematical transition probabili-
ties with their proposal. Min-cut intuition approach can be used in many
kinds of graph like directed, undirected, weighted, and unweighted with
an effective maximum flow algorithm.

Auber et al. [24] assume similarity matrix from the vertex set to
cluster a graph. They define a discrete formula to turn these values into
discrete set. Afterwards, convolution is applied on the discrete set to
cluster the graph. This process is iterated to form a cluster hierarchy.
Yang et al. [25] perform graph clustering through random walk. They
use k-step transition through a probability matrix to find a connection
between two nodes. According to the k-step transition, adjacency matrix
is stored to find a cut point in the matrix. This cut is then used to find a
point to divide the graph into two sets. The process continues until all
elements of a diagonal matrix get traversed. This process usually comes
under the domain of top-down approach.

Another approach somewhat similar to a merging point method in
space is presented in [26]. The key intuition is to merge two points that
are closely related to each other according to their characteristics. This
process of merging the clusters continues until all points are traversed or
a stopping criteria is met. Such method is generally called pairwise
clustering in the literature. Zhang et al. [6] utilizes two approaches for
clustering in their work. They use both local and global clustering
techniques. For the big graph data and dynamic datasets, global clus-
tering method gets computationally expensive. However, the excessive
computation can be reduced by storing the graph in an efficient data
structure. The authors in [33] present Mixing Time of Random Walk
(MTRW) for clustering. It is a randomized algorithm that extracts clus-
ters from a graph according to a pre-specified metric. It finds the locally
optimal solutions. The proposal is distributed and asynchronous. The
work in [34] present Density-Based Clustering of Large Probabilistic
Graphs (DBCLPG). Their method extract subgraphs G` from an input

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

4

graph G, such that G` ⊆ G and the G` density is above a certain threshold.
They exploit the density of the extracted clusters in order to keep them
growing.

2.2. Global graph clustering methods

This section focuses on the global graph clustering methods. Previous
methods on global clustering techniques work for a few million vertices
in dynamic and sparse graphs [27,28]. In a global clustering each vertex
is assigned its own cluster. Whereas, in a local clustering method cluster
assignment is done only for a certain number of nodes. Clustering can be
done on all the data points at once or this can be performed iteratively.
To cluster the large databases simultaneously, online clustering algo-
rithm scans all or at least some portion of the data at once [29]. This
scheme enables to provide a solution for online analytical processing.
Toussaint et al. [30] presents an analytical clustering approach to find
spatial points using the nearest neighbour concept. For clustering the
graph, a distance measure is used to capture the farthest points in the
cluster rather than the closest ones. Zanghi et al. [31] work with graphs
to present an approach for automated web page classification. They
determine the online analytical clustering as k clusters. Various exper-
iments for different values of k are performed to evaluate the classifi-
cation performance. A tree structure is also introduced to make
incremental clusters. The evaluation is performed for a set of documents
taken from Yahoo!, indicating better classification performance. The
work in [32] present a graph clustering method. It is a graph clustering
algorithm based on krill herd (KH) and genetic algorithm (GA). It adopts
the cycle and GA operators, using swarm intelligence, and utilizes the
krill’s movements.

2.3. Hierarchical clustering techniques

Clustering results that provide multi-level clustering are categorized
under the hierarchical clustering methods. Such methods are different
from the flat clustering approach where there is no level-wise repre-
sentation of the data. Global clustering does not fulfil the problem of a
single level. In hierarchical clustering, each cluster is assigned a level.
Therefore, it is convenient to break them into desired number of clusters.
This scheme depends on the complete observations of data for flat/hi-
erarchical clustering. Hierarchical clustering is further divided into two
types of approaches. One is agglomerative (bottom-up) and the second
being divisive (top-down). Morisi et al. [35] use hierarchical clustering
method to investigate the approximate computation of the consensus
state of a network. In their method clusters are presented in a hierarchal
manner. They use spectral graph theory method where a graph is
divided into a number of partitions. Each subgraph has its own spectral
properties. This facilitates in quick convergence toward the centroid of
each subgraph. Guha et al. [36] present an approach named clustering
using representatives (CURE). It is a hierarchical clustering method
which first partitions the dataset and then partially clusters the data
points accordingly. After removing the outliers, the pre-clustered data in
each partition is then grouped to produce the final clusters. This clus-
tering algorithm recognizes the arbitrarily shaped clusters and detects
outliers. Guha et al. [37] present an approach called robust clustering
using link (ROCK) to find the clusters. The ROCK framework exploits the
link property when making decisions about the points to be merged into
a single cluster. If the link between two points is large, it is probable that
these two points belong to the same cluster. Clustering points based on
only the closeness between them is not very efficient because two nearby
points may be neighbors. However, even if two points of different
clusters are neighbors, it is unlikely that the pair has a large number of
common neighbors.

2.4. Key limitations of the previous work

Zhang et al. [6] utilized the limited random walk algorithm for both

global and local graph clustering problems. In some cases, domain ex-
perts are usually involved in determining the clusters for a given seed
node. This is called the local clustering task. For instance, if a user re-
quires to check the closely related friends and family members in a social
network then the clustering approach should assign a node to traverse its
neighbors only, instead of exploring the complete graph. The proposed
approach in this work addresses this issue by limiting the random walk
around the seed node. Additionally, the seed node is selected here based
on a weighted connection strategy, instead of making a random choice.
Tabrizi et al. [38] combined modularity function and random walk to
precisely determine the clusters of a graph. They termed the strategy as
personalized page rank clustering (PPC). Their method is a top down
approach which recursively partitions subgraph until modularity gain is
finished. Modularity function is not an appropriate choice to be com-
bined with a random walk as there are other more compatible functions
that can work with the random walk. The proposed work here addresses
this issue by guiding the random walk utilizing the friends-of-friends
concept. This enables to extract logically connected groups. Pavan
et al. [26] used hierarchical clustering technique to find clusters from a
dataset. The computational time for hierarchical clustering is O(n2 log
(n)). This work addresses the same problem of clustering efficiently by
consuming lesser additional resources. Papalexakis et al. [39] finds well
defined clusters across all views and addresses the problem of multi-
graph clustering. They used two approaches to find clusters. One is
tensor-based decomposition principle and second is the minimum
description length-based technique. However, the presence of additional
noise can degrade the performance of their approach by reporting false
positive groups. The present proposal addresses this by discarding the
singleton clusters formed by the random walk-based solution. Table 1
lists the key features of the closely related methods and the proposed
approach. Where nc is the average cluster size, J denotes the number of
vertices that the LRW procedure visits in each iteration and K is the
number of iterations for the LRW procedure to converge.

3. Proposed solution

This section presents the proposed solution. The work in this paper
addresses graph clustering using random walk-based approach. For this,
first, the basic notations are defined and later the proposed strategy is
explained. The main goal of this work is to address the task of clustering
graphs using an efficient random walk method. For this, a novel walk
approach in a graph is presented that determines the weight of the edges
and the degree of the nodes. This information is utilized by the pseudo-
guidance model to guide the random walk procedure.

3.1. Basic notations

Graph G(V,E) is represented as a combination of nodes N and edges
E. Where V = {V1,V2,V3,…Vn} is the set of nodes (also called the vertices)
and E={E1,E2,E3,…En} is the set of edges. Suppose Ag is the adjacency
matrix formed from a graph G. The adjacency matrix Ag is the combi-
nation of 0 s and 1 s with nodes represented by the columns and rows.
Intersection of a row and a column represents the existence or un-
availability of edge between these nodes. If a cell contains zero, it means
there is no edge between the nodes, otherwise an edge exists between
those nodes. Suppose D is the diagonal matrix in which the diagonal of a
matrix represents the degree of each node in the graph. In a diagonal
matrix, all other elements apart from the diagonal elements are zeros.
Such matrix is utilized when graph having self-loops are used for map-
ping a real-world problem.

This work mainly focuses on the clustering of graphs through
random walk. It is therefore needed to describe the random walk on a
graph here followed by the proposed strategy. Consider a graph with |N|
nodes and |E| edges. These edges can either be directed or undirected.
Random walk in a graph is a probabilistic process of visiting neighboring
nodes. When a walking agent starts its walk from a seed vertex it can

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

5

jump to any of its neighbor subject to the connectivity through an edge.
Walking agent is solely responsible for starting its walk from the seed
vertex and then jump to any of its neighbor randomly. The selection of
the neighbor depends on a specific criteria, at times, depending on the
problem domain.

Consider a graph G (V, E) having |V| vertices and |E| edges. A
walking agent starts a random walk from the seed vertex V0 and moves
to its neighbor on the basis of a probability distribution function. The
probability of the neighbor node being visited is usually determined as,
1/deg(vt). Where v is a vertex, Vt is the node at step t, and deg(v) is the
degree of the node v. The probability of moving to a node is determined
using Eq. (2). The probability is computed using the Markov clustering
method.

Pt(i) = Prob(vt = i) (2)

3.2. Proposed strategy

In order to extract coherent clusters from a graph, first the degree of
each node is determined. The node having maximum degree is selected
as a source node for the random walk to start. This enables to select the
most connected node as the starting point to initiate the walk. Consid-
ering an analogy of a social network, a well-connected person (assum-
ingly also influential in terms of disseminating information) will have
the maximum degree. However, this node’s degree is not traditionally
computed using the count of edges incident on a vertex. For this, the
weight of the edges is first computed based on the friends-of-friends
concept. Instead of utilizing the raw edge weight of a graph, the edge
weight here is computed as the count of the number of common
neighbors of the nodes connected by the edge under consideration.
Consider the example graph listed in Fig. 1, there are seven nodes in the
graph. For the edge between node A and node B the adjacency matrix-
based data structure will have a value of 1 in the corresponding cell,

indicating edge existence between the two nodes. However, based on the
friends-of-friends concept, the number of common friends of these two
nodes is 2, this becomes the edge weight for (A, B). Similarly, there is no
common friend of the nodes B and F therefore a weight of 0 is assigned to
the edge (B, F). Weights for the rest of the edges can be seen in Fig. 1.
Node weight is calculated using these weights on the edges.

This work presents an innovative approach for extracting clusters in
a graph based on the intuition of commonalities between nodes. For this,
the current proposal first focuses on finding the common neighbors for
the nodes incident on an edge. Using this, the weight of the edge is
determined between the two nodes. If there is no common neighbor, the
weight assigned to this edge is 0. If there is one common neighbor, a
weight of one is mentioned over the edge, and this process continues.
After determining the edges’ weights, the random walk starts from the
highest degree node to its neighbors. Where, degree of a node is
computed by summing the edge weight incident on the node. An agent
walks on the graph edges using a guidance mechanism. The agent is
guided using the edge weights. It continues to walk as long as a weight
greater than 0 or Tr (a user provided number is available). Using this, the
agent moves to the neighbors. The stopping criteria for the agent is met
if all non-zero edges are traversed or there is no direct path available for
the agent to reach another node from the current

position. Once a walk is completed by the agent, the visited nodes are
extracted from the original graph and these form a cluster. Afterwards,
the agent starts its next iteration. However, for this, the edge and node
weights are recomputed first for the remaining graph. This process it-
erates until all nodes in the original graph are processed. The singleton
clusters obtained using this process are termed as noise and are therefore
discarded. Fig. 2 visually displays working of the proposed solution. The
proposed approach selects the most concentrated node as the seed to
start the random walk. However, there is a possibility that a tie may
occur between multiple nodes. To address this case, any one of the nodes
ranked at the same level is selected as the seed. This is done randomly
because the current proposal provides priority list to the random walker

Table 1
Key features of the proposed work and past methods.

Methods Time
complexity

Space
complexity

No. of datasets used to
evaluate

Suitable for large
graphs

Evaluation metrics
utilized

Based on random Walk/
Friend-of-Friend

Proposed O(cn2) O(n2) 7 √ 4 √
(Zhang et al. 2016)-LRW O(KJnc) O(n2) 5 √ 2 √
(Akbari et al., 2019)-GAKH O(cn2xI) O(In2) 10 x 2 X
(Pavan et al. 2007)-PC O(n2 log(n)) O(n2) 3 x 2 X
(Avrachenkov et al. 2014)-

MTRW
O(n3) O(n2) – – – √

(Tabrizi et al. 2013)-PPC O (n) O(n2) 12 √ 1 √
(Halim et al. 2019)-DBCLPG O(nxn) O(n2) 7 √ 3 √
(Pons et al. 2005)-Walktrap O(mn2) O(n2) 6 √ 4 √
(Papalexakis et al. 2013)-

MULTICLUS
O(k2m) O(n2) 5 x 2 X

Fig. 1. A sample graph with edge weights computing using friends-of-friends concept.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

6

to choose from instead of hard coding the walk. This can result in
different clustering formations when the proposed algorithm is executed
multiple times. The same is true for a pure random walk-based clustering
solution. However, due to the current proposal’s pseudo-guidance
mechanism the final clustering quality will be better than a pure
random walk. The time complexity of the proposed solution is O(cn2).
Where, c is the number of clusters and n is the number of nodes. It is
worth mentioning that the tighter bound on the random walk is O(n3) for
a graph with n nodes. However, the current proposal does not require
the random walk procedure to be exhaustively executed for the com-
plete graph. Instead, it limits the walk based on the values of the
threshold Tr and the number of clusters c.

As shown in Fig. 2, the dataset is first converted into a graph-based
representation (if it is already not in a graph format). This is followed
by the steps of preprocessing, i.e., computing edges’ and nodes’ weight,
and then the guided random walk procedure is adopted for clustering.
The process gives clusters as the output by discarding those groups
having one node only, i.e., singleton clusters.

The random walking agent (random walker) in this approach starts
its walk from the highest weighted node, later it randomly selects any of
the neighboring nodes having non-zero edge weight between the current
node and the neighbor. Since the edge weights are assigned based on
commonalities between the adjacent nodes, this guidance mechanism
enables to extract more coherent clusters using the random walk in the
graph. Pseudocode of the proposed approach is listed as Fig. 3. The
proposed approach receives two parameters, the dataset (D) and the
threshold (Tr). Initially, the dataset is read pairwise and the graph rep-
resentation is formed by creating nodes for the data items and drawing
an edge between two adjustment nodes. Next, the graph is stored in an
adjacency matrix (M). The adjacency matrix is used here as a data
structure to store the graph due to its lower time complexity in retrieving
information in comparison to the adjacency list. The matrix M is
multiplied by itself to compute the number of common neighbors be-
tween any two nodes. The loop from line 9–15 converts every number in
the adjacency matrix that is greater than 0 to a 1 and the rest to a 0. This
loop is a preprocessing step that is required to obtain the number of
common neighbors between any two nodes. The adjacency matrix is
multiplied by itself and the resultant matrix contains the number of
common neighbors between any two nodes (with an exception of the
values at the diagonal). In case, the loop from line 9–15 is omitted the
computation of common neighbors via matrix multiplication will give
erroneous values. The values at the diagonal of the matrix obtained after
multiplication are ignored. An extra row is maintained in the adjacency

matrix to store the nodes’ weight. This enables to obtain a node’s pre-
computed weight in O(1) time. The weight of a node is the sum of
weights of all the edges incident on it. Next, the clustering procedure is
started by placing the random walking agent on the node with the
highest weight. The agent randomly picks the next node from the
neighbors of the starting node. However, visiting the node is decided
based on the value of Tr and the edge weight. The variable Tr is a user
provided threshold that determines the minimum number of common
connectivity between a cluster and its neighbor to consider it for
merging into the cluster. Each cluster grows as long as valid neighbors
are available in its vicinity. Line 31 moves the random walking agent
arbitrarily to any of its neighbor. Once the cluster stops growing, it is
extracted from the original graph and the same process is repeated for
the remaining graph.

4. Experiments

This section lists the conducted experiments and obtained results.
For experiments, 18 benchmark datasets are utilized. The choice of these
datasets is made based on their diversity and utilization in previous such
studies. This section first explains the datasets, followed by the evalu-
ation metrics, and a brief about the competing approaches before listing
the results. All experiments are performed on Intel Core i7 machine with
3.2 GHz processor and 8 GB RAM.

4.1. Datasets

The experiments here are performed on 18 benchmark graph data-
sets. These are taken from various sources keeping domain and size di-
versity in view. These include: Karateclub, Mcldata, Dolphins, Lesmis,
Facebook combined, Moreno health, Air traffic control, Wiki-Vote, 192bit,
176bit, Citation, Protein Interaction, GEOM, ENRON, GRQC, CNetwork,
CM Cnetwork, AP Cnetwork, and EP Cnetwork. The size of these datasets
ranges from 34 nodes to 36692 nodes. Additionally, these datasets have
a minimum of 78 and a maximum of 705084 edges. The size of a graph is
dependent on both number of nodes and the number of edges. For a
complete analysis either the number of nodes or the number of edges
cannot be considered in isolation. For example, if a graph has say
1000000 nodes with 0% density, i.e., no edges, considering such graphs
for simulations will be inappropriate. Similarly, for a graph having 100
% density, but with too few nodes, say 10 will also be unsuitable.
Therefore, the choice of datasets for simulations in this work is made
based on both the number of nodes and the number of connecting edges

Fig. 2. Overall working of the proposed solution.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

7

Fig. 3. Pseudocode of the proposed random walk-based clustering approach.

Table 2
Summary of the datasets utilized.

Dataset No. of nodes No. of edges Domain Universal Resource Locator (URL)

Karateclub 34 78 Social network http://konect.uni-koblenz.de/networks/ucidata-zachary
Mcldata 200 2500 Images http://mcl.usc.edu/mcl-jcv-dataset/
Dolphins 62 159 Life science http://konect.uni-koblenz.de/networks/dolphins
Lesmis 77 254 Miscelenious http://konect.uni-koblenz.de/networks/moreno_lesmis
Facebook combined 4037 87933 Social network https://snap.stanford.edu/data/egonets-Facebook.html
Moreno health 2539 12969 Social network http://konect.uni-koblenz.de/networks/moreno_health
Air traffic control 1226 2615 Infrastructure http://konect.uni-koblenz.de/networks/maayan-faa
Wiki-Vote 7115 103689 Wikipedia who-votes-on-whom network https://snap.stanford.edu/data/wiki-Vote.html
192bit 14000 154000 Miscellaneous Networks http://networkrepository.com/192bit.php
176bit 7000 82000 Miscellaneous Networks http://networkrepository.com/misc.php
Citation 27400 705084 Scientometrics http://www.sommer.jp/graphs/
Protein Interaction 2361 75740 Bioinformatics http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
GEOM 7343 11898 Bioinformatics http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.htm
ENRON 36692 183831 Email network http://snap.stanford.edu/data/email-Enron.html
GRQC CNetwork 5242 14496 Scientometrics http://snap.stanford.edu/data/ca-GrQc.html
CM Cnetwork 23133 93497 Scientometrics http://snap.stanford.edu/data/ca-CondMat.html
AP Cnetwork 18772 198110 Scientometrics http://snap.stanford.edu/data/ca-AstroPh.html
EP Cnetwork 12008 118521 Scientometrics http://snap.stanford.edu/data/ca-HepPh.html

Z. Halim et al.

http://konect.uni-koblenz.de/networks/ucidata-zachary
http://mcl.usc.edu/mcl-jcv-dataset/
http://konect.uni-koblenz.de/networks/dolphins
http://konect.uni-koblenz.de/networks/moreno_lesmis
https://snap.stanford.edu/data/egonets-Facebook.html
http://konect.uni-koblenz.de/networks/moreno_health
http://konect.uni-koblenz.de/networks/maayan-faa
https://snap.stanford.edu/data/wiki-Vote.html
http://networkrepository.com/192bit.php
http://networkrepository.com/misc.php
http://www.sommer.jp/graphs/
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.htm
http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-CondMat.html
http://snap.stanford.edu/data/ca-AstroPh.html
http://snap.stanford.edu/data/ca-HepPh.html

Journal of Computational Science 51 (2021) 101281

8

in the graph.Table 2 lists the summary of these datasets. The karateclub is
a social network of a university karate club which has 34 nodes and 78
links. The karateclub network is divided into two groups by Zachary et al.
[40]. The mcldata represent 24 source videos having resolution
1920 × 1080 and 51 H.264/AVC encoded clips for each source
sequence. The dataset consists of 200 nodes and 2500 edges between
them. The protein Interaction dataset is about the predictions of cellular
localization sites of proteins with 2361 nodes and 75740 edges. It has
eight features per instance. The dolphins data is a directed social network
of bottlenose dolphins. The nodes represent bottlenose dolphins living in
a community of Doubtful Sound, a fjord in New Zealand. An edge in-
dicates their frequent association. The dataset has 62 nodes and 159
edges. For this dataset, the dolphins were observed between 1994 and
2001. The lesmis dataset represent a co-appearance network (igraph
object2) of characters in the novel Les Miserables (written by a French
writer Victor Hugo). Its vertices are the novel characters and an edge
indicates that the two characters appear together in the same chapter at
least once. Vertex attributes for this graph are unique identifier, a vertex
number between 1 and 77, and label, i.e., the character’s name. The
dataset facebook combined is extracted from actual users of the facebook.
The dataset has 87933 edges between 4038 nodes. The links in this data
do not carry any weight. The air traffic control data is constructed from
the USA’s FAA (Federal Aviation Administration) National Flight Data
Center (NFDC), consisting of preferred routes. Nodes in this network
represent airports or service centers and links are created from strings of
preferred routes recommended by the NFDC. This network has 1226
vertices and 2615 edges. The moreno health dataset is a directed network
created from a survey data. Each survey participant listed her/his five
best female and five male friends. A node in the data represents a student
and an edge between two students shows that the left student (node)
chose the right student (node) as a friend. Higher edge weights indicate
more interactions. The wiki-vote dataset is extracted from Wikipedia
using its dump page edit history by extracting all administrator elections
and vote history data. The dataset has 7115 nodes and 103689 edges.
The 192bit and 176bit are taken from the interactive data and network
data repository having 14000 and 7000 nodes, respectively. The citation
data contains 27400 nodes and 705084 edges representing the number
of citations from the scientific papers represented as nodes. The GEOM
data is a collaboration network with 7343 nodes representing different
authors and 11898 edges, which represents the joint work of multiple
authors. The dataset enron is an email network having 36692 nodes and
183831 edges. The GRQC CNetwork (General Relativity and Quantum
Cosmology collaboration network) data comprises of 5242 nodes and
14496 edges. The nodes in this dataset represent the authors and the
edge between two authors represents collaborating authors. The CM
Cnetwork, AP Cnetwork, and EP Cnetwork datasets represents collabora-
tion network is from the e-print arXiv and covers scientific collabora-
tions between authors papers submitted to condense matter physics,
astro physics, and high energy physics-phenomenology categories,
respectively.

4.2. Other competing approaches

The random walk-based clustering solution presented in this work is
compared with seven closely related state-of-the-art methods. These
include: Walktrap [16], Pairwise Clustering (PC) [26], Personalized
page rank clustering (PPC) [38], Mixing Time of Random Walk (MTRW)
[33], Limited Random Walk (LRW) [6], Genetic Algorithm Krill Herd for
graph clustering (GAKH) [32], and Density-Based Clustering of Large
Probabilistic Graphs (DBCLPG) [34]. The choice of these methods is
made based on close relevance mainly decided by the utility of graphs,
random-walk, or friend-of-friend concept. Table 3 lists a summary of the
competing methods with respect of various relevance factors. As shown

in the table, all the competing methods addresses graph clustering and
57 % of these, i.e., 4 are the graph clustering methods that utilize
random-walk. In terms of recency, these seven methods can be divided
into three brackets; latest, established, and classic. It can be seen from
the table that 28 % of the competing methods are from the latest bracket,
28 % are from the latest group, and 42 % of the comparison methods are
the classic ones. Following is a brief description of these seven clustering
methods.

4.2.1. Limited random walk (LRW)
The limited random walk [6] utilizes inflation and normalization

applied at each step to cluster a graph. Applying inflation operator to the
matrix causes it to increase the existing small differences. The approach
is time-homogeneous Markov chain procedure. The procedure uses both
local and global clustering techniques.

4.2.2. Pairwise clustering (PC)
Pairwise clustering [26] is based on merging two points that are

closely related to each other according to their characteristics. This
process of merging the clusters continues until all points are traversed or
a stopping criteria is met.

4.2.3. Personalized page rank clustering (PPC)
Personalized page rank clustering [38] combines modularity func-

tion and random walk to precisely determine the clusters of a graph. The
method is a top down approach which recursively partitions subgraph
until modularity gain is finished.

4.2.4. Genetic algorithm krill herd for graph clustering (GAKH)
The work in [32] present a graph clustering algorithm based on KH

and GA. It adopts the cycle and GA operators, using swarm intelligence,
and utilizes the krill’s movements.

4.2.5. Mixing time of random walk (MTRW)
MTRW [33] is a randomized algorithm that extracts clusters from a

graph according to a specified metric. It finds the locally optimal solu-
tions. The proposal is distributed and asynchronous.

4.2.6. Density-based clustering of large probabilistic graphs (DBCLPG)
The DBCLPG method [34] extracts subgraphs G` from an input graph

G, such that G` ⊆ G and the density of G` is above a certain threshold.

Table 3
Summary of the competing methods.

Competing
method

Year Citations
(April
2020)

Utilizes
graphs?

Utilizes
random
walk?

Utilizes
friend-of-
friend
concept?

Walktrap [16] 2005 1510 √ √ x
Pairwise clustering

(PC) [26]
2007 464 √ x x

Personalized page
rank clustering
(PPC) [38]

2013 38 √ √ x

Mixing Time of
Random Walk
(MTRW) [33]

2014 11 √ √ x

Limited random
walk (LRW) [6]

2016 12 √ √ x

Genetic algorithm
krill herd for
graph clustering
(GAKH) [32]

2019 . √ x x

Density-Based
Clustering of
Large
Probabilistic
Graphs
(DBCLPG) [34]

2019 6 √ x √

2 http://igraph.org/r/doc/

Z. Halim et al.

http://igraph.org/r/doc/

Journal of Computational Science 51 (2021) 101281

9

They exploit the density of the extracted clusters in order to keep them
growing.

4.2.7. Walktrap
The work in [16] is a random-walk-based clustering technique that

computes distance between two nodes using a fixed number of steps
utilizing the probability matrix. The method walktrap captures com-
munity structure in a network which can be used in an agglomerative
clustering algorithm.

4.3. Evaluation metrics

The clustering results of the competing approaches are evaluated
using six clustering evaluation metrics, namely: Davies Bouldin index
(DBI), Dunn index (DI), Calinski-Harabasz index (CHI), silhouette co-
efficient (SC), modularity index, and normalized cut.

4.3.1. Davies-Bouldin Index (DBI)
DBI validates the inter-cluster and intra-cluster similarity of the

nodes in the formed clusters. The index validates the clusters based on
dimensions inherent to the dataset. Mathematically, DBI is computed
using Eq. (3). Where, n represents the number of clusters. The variable
σi represents the average distance of all the nodes in the cluster to the
center of the cluster ci. The value of d(ci, cj) is the distance between
centroids of the two clusters ci and cj. The DBI ranges in [0, ∞]. The
value of DBI closer to 0 indicates better clustering formation.

DBI =
1
n
∑n

i=1
max

i∕=j

(
σi + σj

d(ci, cj)

)

(3)

4.3.2. Dunn index (DI)
DI is another evaluation metric for the validity of clustering results. It

checks how dense the cluster is with-in and how well it is separated from
other clusters. Eq. (4) shows the mathematical formulation of DI. Where
d(i,j) denotes the distance between two clusters, while d’(k) represents
the distance between the nodes within the cluster. For a given clustering
formation, higher values of DI indicate better clustering.

DI = min
1≤i≤n

⎧
⎨

⎩
min

1≤j≤n,i∕=j

⎧
⎨

⎩

d(i, j)
max
1≤k≤n

d’(k)

⎫
⎬

⎭

⎫
⎬

⎭
(4)

4.3.3. Calinski-Harabasz index (CHI)
Calinski-Harabasz index measures the clustering quality by gauging

the separation between formed groups. Eq. (5) lists the formula to
compute CHI.

CHI =
Sb/(k − 1)
Sw/(n − k)

(5)

Where, Sb is the squared sum of inter-cluster distance, Sw is the squared
sum of intra-cluster distance, k is the number of clusters, and n is the
number of objects (nodes in this case). Higher CHI values indicate better
clustering.

4.3.4. Silhouette coefficient (SC)
This clustering validation metric (Eq. (6)) checks nodes’ similarity

with all other nodes in its cluster and it also checks dissimilarity of the
node from the members of other clusters. The value of SC is in the range
[-1, 1]. The clustering formations having higher SC value have more
cohesion that those having lower SC values. Mathematically, silhouette
coefficient can be written as follows.

SC =
1
N

∑N

i=1
{

b(i) − a(i)
max{a(i), b(i)}

} (6)

Where, b(i) is the average dissimilarity of node i with all the other nodes

in the other clusters, i.e., inter-cluster dissimilarity. The value a(i) is the
average dissimilarity of node i from the other nodes within the cluster, i.
e., intra-cluster dissimilarity.

4.3.5. Modularity index
Modularity index finds the modular strength of a cluster in a

network. It is computed using Eq. (7). Higher modularity value indicates
better clustering value.

Q =
∑k

i=1
(eii − ai2) (7)

Where, ai is the percentage of edges with at least one end in module I,
ai=|{(u,v) : u ∈ Vi, (u,v)∈ E}|/|E|. The term eii show percentage of edges
in module i, eii=|{(u,v) : u ∈ Vi, v ∈ Vi, (u,v)∈E}| / |E|.

4.3.6. Normalized cut
It is another metric to find the partitions of graphs with minimum

connections between two clusters. The optimal bi-partitioning of a graph
is the one that returns the minimum cut value. It is computed using Eq.
(8).

Ncut(A,B) =
cut(A,B)

asso(A,V)
+

cut(A,B)
asso(B,V)

(8)

Where, cut(A,B) =
∑

u ∈A, v ∈B
w(u, v) and asso(X,V) =

∑

u∈X, t∈V
w(u, t) is the

total connection from nodes in X to all nodes in the graph.

4.4. Comparison

This section presents the comparison of the proposed approach, this
point onwards referred to as Pseudo-Guided Random Walk (PGRW). The
comparison here is made with seven baseline/state-of-the-art related
clustering methods using the 18 benchmark datasets. Seven standard
evaluation metrics are used here, namely, DBI, DI, CHI, SC, modularity
index, normalized cut, and execution time. The obtained results are
grouped here metric wise.

4.4.1. Comparison based on DBI
The DBI is a stranded clustering validity index to gauge clustering

quality. For a clustering formation produced by a method, the DBI
represents a numeric value, where the lesser value of this index repre-
sents better clustering formation. The DBI computed for the eight
computing methods is shown in Fig. 4. It can be seen from the results
that the proposed methods perform better than others on nine (out of
18) datasets achieving minimum DBI value. The datasets for which
PGRW performed better include, dolphins, moreno health, facebook com-
bined, 176bit, EP Cnetwork, 192bit, AP Cnetwork, citation, and ENRON.
The clustering method Walktrap has been the second best by achieving
minimum DBI value over 7 out of the 18 datasets. The method LRW
performs better on two datasets, i.e., karateclub and mcldata. The
DBCLPG clustering method has performed the least based on the DBI by
achieving the maximum DBI value (indicating inappropriate clustering
formation) over eight datasets.

4.4.2. Comparison based on DI
The DI is the second cluster validity index used here for comparing

performance of the eight clustering methods. The DI computes a
numeric value for a given cluster formation, where a higher DI value
indicates better clustering as compared to a clustering formation for
which the computed DI is low. The DI values obtained for the eight
competing methods is shown in Fig. 5. Based on this metric, the pro-
posed approach has performed better on protein interaction, facebook
combined, GRQC Cnetwork, wiki-Vote, and EP Cnetwork datasets. As
shown in the figure, PPC, DBCLPG, and Walktrap perform equally and
achieves second best DI value (indicating appropriate clustering

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

10

Fig. 4. Results of the eight competing methods using DBI.

Fig. 5. Results of the eight competing methods using DI.

Fig. 6. Results of the eight competing methods using SC.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

11

formation) on three datasets each. Whereas, the clustering method
GAKH performed best on two datasets (i.e., lesmis and mcldata) and
MTRW has better performance only on the air traffic control dataset.

4.4.3. Comparison based on SC
The SC is a standard validity index used widely to evaluate clustering

quality. The value of SC ranges between -1 to 1, where the SC value close
to 1 indicates more cohesive clustering. An experiment has been per-
formed that computes the SC value of each of the eight competing
methods over the 18 benchmark datasets. The results of this are shown
in Fig. 6. The figure shows that the proposed approach performs better
only on AP Cnetwork and citation datasets based on the SC metric. Based
on the results in Fig. 6 the DBCLPG method performs better than others
by achieving maximum SC value over six datasets, namely, air traffic
control, protein Interaction, moreno health, GRQC Cnetwork, GEOM, and
CM Cnetwork. Performance of LRW and PPC is the second best as they
obtain higher SC values on three datasets each. Whereas, the perfor-
mance of the proposed method, i.e., PGRW, and two other approaches is
ranked 3rd based on SC as they obtain better SC value than others on two
datasets each. Clustering is an unsupervised learning task and gauging
the quality of results in the absence of the ground truth is challenging.
Performance evaluation using one metric may differ than the other in
such scenario. Therefore, in all such cases, multiple metrics are utilized
to make an informed quantitative decision about the performance.

4.4.4. Comparison based on CHI
The CHI is the fourth cluster validity index used in this work for

evaluating the clustering quality obtained by the proposed approach and
the seven state-of-the-art methods used for comparison. Like other val-
idity indices, the CHI is also a numeric value where a higher CHI value
indicates better clustering formation in comparison to a lower value. An
experiment has been performed that computes the CHI value of each of
the eight competing methods over the 18 benchmark datasets. The re-
sults of this are shown in Fig. 7. The results suggest that PGRW perform
better than others on the eight datasets. These datasets include dolphins,
protein interaction, moreno health, facebook combined, GRQC Cnetwork, AP
Cnetwork, CM Cnetwork, and citation. Using CHI as a metric, the Walktrap
clustering method performs the second best by achieving higher CHI
values than others on three datasets. LRW has performed better than
others in three cases. The clustering methods, PPC, GAKH, DBCLPG, and
MTRW perform better than other competing approaches in one case
each.

4.4.5. Comparison based on modularity index
Modularity index is used to find the modular strength of a cluster in a

network. It is utilized here as the fifth cluster validity index. The
modularity index values computed for the eight computing methods are
shown in Fig. 8. The results suggest that the proposed approach performs
better than other on eight datasets, namely, protein interaction, moreno
health, facebook combined, GRQC Cnetwork, wiki-Vote, EP Cnetwork, CM
Cnetwork, and citation. The Walktrap and LRW are ranked 2nd and 3rd
respectively by performing better than others on 6 and 4 dataset,
respectively.

4.4.6. Comparison based on normalized cut
The normalized cut is a standard metric majorly used in graph theory

to find the partitions of graphs with minimum connections between two
clusters. An experiment has been performed where each of the
competing methods is executed on the 18 benchmark datasets and
normalized cut of the resulting clustering formations is computed
accordingly. The normalized cut is represented by a numeric value
where the lesser value of this metric indicates better clustering forma-
tion. The results of this experiment are shown in Fig. 9. These results
suggest that the Walktrap method performs better in case of normalized
cut by achieving better value of this metric on nine datasets, i.e., dol-
phins, lesmis, protein interaction, moreno health, facebook combined, GRQC
Cnetwork, 176bit, 192bit, citation, and ENRON. Whereas, PGRW and LRW
are ranked second here as they perform better than other clustering
approaches in two cases each. The DBCLPG is the least performing
clustering method based on the normalized cut as it could not get the
minimum value in comparison to others on any of the 18 datasets.

4.4.7. Comparison based on execution time
A comparison of the eight competing methods is also performed

based on execution time. The eight clustering methods are executed on
all 18 benchmark datasets and the execution time of each is recorded.
Although the asymptotic time complexity of the competing methods is
listed in Table 1, however, the actual execution may vary majorly
depending on the dataset represented as a graph, its number of nodes
and the number of edges. It is worth mentioning here that two of the
competing methods, i.e., LRW and PPC are parallel computing-based
clustering approaches and they will have a clear advantage in execu-
tion time over all other methods. For the sake of completeness, execu-
tion time of these two methods is also reported. Fig. 10 shows the
execution time of the eight competing methods. The proposed method
performs better than others (in terms of time) on karateclub, dolphins,
lesmis, and mcldata. On the remaining datasets, either LRW or PPC

Fig. 7. Results of the eight competing methods using CHI.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

12

consumes minimum execution time. These two are the parallel
programming-based methods and comparing their execution time with
the other six methods will not be rational, therefore the remaining re-
sults are explained after excluding LRW and PPC. After this normaliza-
tion, the Walktrap method consumes less time than other clustering
methods considered in this work on 11 datasets. Whereas, the proposed
method consumes minimum time on five datasets and is ranked 2nd.
However, if the average of the time consumed by all the competing
methods over 18 datasets is computed, the difference between Walktrap
and PGRW is about 1.25 s only. The difference between the average time
(on the 18 datasets) consumed by six other methods and PGRW and
Walktrap is more than 13 s.

4.5. Performance comparison using other weight assignment methods

In addition to the evaluation of the proposed technique based on the
notion of common neighbors, an experiment is performed using three
weight assignment methods. These include, friends of friend (FoF)
method, Jaccard index (JI), and Pearson correlation coefficient (r) [41].

The common neighbor notion also called the FoF is already explained in
the preceding section. The Jaccard’s index in Eq. (9) computes dissim-
ilarity between sample sets. The value of JI is obtained by dividing the
difference of the sizes of the union and the intersection of two sets by the
size of the union. Its value ranges between 0 and 1.

JI (A,B) =
|A ∩ B|
|A ∪ B|

(9)

The r (Eq. (10)) is a measure of the linear correlation between two
variables X and Y. The value of r ranges between +1 and − 1, where 1 is
total positive linear correlation, 0 is non-linear correlation, and − 1 is a
total negative linear correlation.

r =

∑
XY − nXY

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

X2 − nX2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
Y2 − nY2

√ (10)

Fig. 11 shows the result of the this experiment by plotting values of
DBI, DI, CHI, and SC for the air traffic control and yeast datasets using
FaF, JI, and r to assign weights. It can be seen that FoF performs better

Fig. 8. Results of the eight competing methods using modularity index.

Fig. 9. Results of the eight competing methods using normalized cut.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

13

than the other two indices. However, the performance difference be-
tween JI and FoF is marginal and JI shows the second best results. The
proposed approach actually guides the random walk in forming appro-
priate clusters. Therefore, there can be instances where JI’s performance
is better than FoF if the pseudo-guided random walk is executed multiple
times. The reason for JI and FoF performing so closely is the fact that
both actually computes cohesions between two nodes of a graph to es-
timate similarity.

5. Statistical significance

In the statistical analysis, the term significant means something quite
different. It is important to see the significant difference between the
proposed clustering approach and the seven other methods. Therefore,
the paired sample t-test is used here to see if the outcome of the proposed
solution is statistically significant as compared to the seven related state-
of-art algorithms. For this, first, the null hypothesis (H10) and its alter-
native (H1A) hypothesis are defined in Table 4. The performance eval-
uation of the proposed work with competing algorithms is based on the
six cluster validity metrics. Therefore, the statistical test is performed for

each of these criteria. The level of significance α, a probability to reject
the null hypothesis, is set to 5%. Where, 95 % confidence level (1-α)
refers to the probability of accepting the null hypothesis. The degree of
freedom df presents the total number of datasets, i.e., 18. The proba-
bility value (i.e., p-value) determines the evidence to reject the null
hypothesis. A small p-value show more evidence in favor of the alter-
native hypothesis.

This section statistically investigates if the proposed solution does
not perform better using the six cluster validity indices, i.e., DBI, DI, SC,
CHI, modularity index, and normalized cut. For this, t-statistic is
computed for each pair. Therefore, first, a score is assigned to each
approach for all datasets using the six cluster validity indices. The score
shows that an approach performs better on how many metrics out of the
six cluster validity indices for a given dataset. For example, if an
approach performs better for three validity indices on a given dataset,
then the score will be 3 out of 6. Table 5 present all assigned scores. The
result of the paired sample t-test is shown in Table 6 using the data
mentioned in Table 5. Table 6 describe the significant difference be-
tween the PGRW and PC [t(17) = 4.852507, p < 0.05)], PPC[t
(17) = 2.9676999, p < 0.05)],GAKH[t(17) = 3.9392934, p < 0.05)],
DBCLPG [t(17) = 2.7301305, p < 0.05)], and MTRW [t
(17) = 3.1314864, p < 0.05)]. Based on the obtained p-value, the null
hypothesis is rejected in favor of the alternative hypothesis. However,
there is no significant difference between PGRW and LRW [t
(17) = 1.4995695, p = 0.1520677)], Walktrap [t (17) = 1.1149124, p =
0.28040188). These methods perform, very close to each other.

Fig. 10. Results of the eight competing methods using execution time.

Fig. 11. Performance comparison using other weight assignment methods.

Table 4
Null hypotheses with their alternatives.

Null hypotheses Alternate hypothesis

H10: The proposed method, PGRW, does
not perform better on the six cluster
validity indices.

H1A,: The proposed method, PGRW, does
perform better on the six cluster validity
indices.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

14

6. Discussion

Many real-world problems generate data that has intrinsic relation-
ship between their entities. Such data can be represented as a graph [42,
43]. This is because graphs provide a rich mapping of many real-world
problems for data presentation to the modern computing devices. It
consists of nodes and edges with their domain specific interpretation.
For instance, nodes in a social network can represent persons, in a
communication networks these can be computers or a server, in bio-
logical experiment nodes may represent proteins. Finding communities
in such large graphs is an active area of research. This task is commonly
known as clustering.

6.1. Brief synopsis

This work has addressed the problem of clustering graphs using a
random walk-based approach. The random walk here was directed by a
pseudo-guidance mechanism towards better clustering formation. The
unsupervised nature of the clustering task makes the job challenging.
The goal here was to form communities in a graph based on common-
alities, instead of utilizing the simple link-based mechanism. Addition-
ally, the relationship between two nodes in a graph is not always
reciprocal. For example, in a social network, if a celebrity is followed by
a fan then it does not mean that the fan is also being followed by the
celebrity. This example is also relevant for a citation graph. Therefore,
additional parameters linking nodes together are always required.
However, this interpretation is usually domain specific. The solution
presented in this work (PGRW) utilized the friends-of-friends concept to

assign weights to the graph’s edges. Later, the edges’ weights were
utilized to find node weight. The node having maximum weight was
marked as the seed node to grow the clusters. The cluster growth was
managed using random walk. However, this walk was guided towards
the nodes where a non-zero edge strength was available. Random walk
has produced good results in studies like [44] and [16]. Guiding the
random walk procedure here, further improved the results. The pro-
posed approach in this work was compared with seven graph clustering
methods, namely, limited random walk (LRW), pairwise clustering (PC),
personalized page rank clustering (PPC), GAKH (genetic algorithm krill
herd) graph clustering, mixing time of random walks, density-based
clustering of large probabilistic graphs, and Walktrap. The comparison
here was based on six cluster validity and other indices. These included:
Davies-Bouldin index (DBI), Dunn index (DI), Silhouette coefficient
(SC), Calinski-Harabasz index (CHI), modularity index, and normalized
cut. Further, the experiments were performed using 18 benchmark
datasets, namely, karateclub, dolphins, lesmis, mcldata, air traffic control,
Protein interaction, moreno health, facebook combined, GRQC Cnetwork,
176bit, wiki-Vote, GEOM, EP Cnetwork, 192bit, AP Cnetwork, CM Cnet-
work, citation, and ENRON. Utilization of six validity indices, execution
time, and 18 datasets helped in averaging out the results and reach
generalized findings.

6.2. Results analysis

This proposal was compared with seven related state-of-the-art
clustering approaches using 18 benchmark datasets based on time and
six cluster validity indices. The proposed solution performed better than

Table 5
Ranking of the competing approaches.

Datasets PGRW LRW PC PPC GAKH DBCLPG MTRW Walktrap

Karateclub 0 0.666667 0 0.166667 0 0 0.166667 0
Dolphins 0.333333 0.166667 0 0.166667 0 0 0.166667 0.166666667
Lesmis 0 0.5 0 0.166667 0.166667 0 0 0.166666667
Mcldata 0 0.5 0 0.333333 0.166667 0 0 0
Air traffic control 0 0.333333 0 0.166667 0 0 0.166667 0.333333333
Protein Interaction 0.5 0 0 0 0 0.166667 0.166667 0.166666667
Moreno health 0.5 0 0 0 0 0.166667 0.166667 0.166666667
Facebook combined 0.666667 0 0.166667 0 0 0 0.166667 0
GRQC Cnetwork 0.5 0 0 0 0 0.166667 0.166667 0.166666667
176bit 0.166667 0 0 0 0 0.333333 0 0.5
Wiki-Vote 0.5 0 0 0.166667 0 0 0.166667 0.166666667
GEOM 0.333333 0 0 0 0 0.166667 0.166667 0.5
EP Cnetwork 0.333333 0.333333 0 0.166667 0.166667 0 0 0.5
192bit 0.166667 0 0 0 0 0.333333 0 0.166666667
AP Cnetwork 0.5 0 0 0 0 0.166667 0 0.166666667
CM Cnetwork 0.333333 0 0 0 0 0 0 0.333333333
Citation 0.666667 0.166667 0 0 0 0 0 0.166666667
ENRON 0.166667 0.166667 0 0.166667 0.166667 0.166667 0 0.166666667
Average 0.314815 0.157407 0.009259 0.083333 0.037037 0.092593 0.083333 0.212962963
Std. dev. 0.227869 0.217474 0.039284 0.103058 0.071299 0.117465 0.085749 0.159713342

Table 6
Paired sample t-test results.

Paired differences T df Sig. (2-tailed)

Mean Std. deviation Std. error mean
95 % confidence interval of the difference

Lower Upper

Pairs
PGRW-LRW 0.1574074 0.0103956 0.0024503 0.1522373 0.1625775 1.4995695 17 0.1520677
PGRW-PC 0.3055556 0.1885857 0.0444501 0.2117659 0.3993452 4.852507 17 0.0001494
PGRW-PPC 0.2314815 0.1248116 0.0294184 0.1694087 0.2935543 2.9676999 17 0.0086284
PGRW-GAKH 0.2777778 0.1565707 0.0369041 0.1999102 0.3556453 3.9392934 17 0.0010576
PGRW-DBCLPG 0.222222 0.110404 0.0260225 0.1673148 0.2222222 2.7301305 17 0.0142488
PGRW-MTRW 0.231481 0.14212 0.033498 0.1608006 0.3021623 3.1314864 17 0.0060798
PGRW-Walktrap 0.101852 0.068156 0.016065 0.0679557 0.135748 1.1149124 17 0.2804019

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

15

the other clustering methods on 55.55 % of the datasets based on DBI as
the validity index. For the same metric, the second best performer was
Walktrap having better performance in 38 % instances. Using the DI as a
metric, the proposed solution performed better than others in the ma-
jority of the cases, i.e., 27.33 % instances. The second best performance
has been observed for two methods, namely, PPC and Walktrap having
performed better in 16.66 % cases each. The results obtained for SC as a
cluster validity index show somewhat different ranking in comparison to
the ones obtained using DBI and DI. Here, DBCLPG has been the best
performer achieving the optimum clustering formation in 33.33 % cases.
This is followed by LRW and PPC methods in the second place. The
PGRW and Walktrap methods which got 1st or 2nd slot based on DBI and
DI, share third position based on SC having better performance in 11.11
% instances each.

While using CHI as a cluster validity index, the PGRW has performed
better than others in majority cases, i.e., in 44.44 % instances. Whereas,
the Walktrap has performed better in 22.22 % cases thus achieving
second slot. The clustering method LRW is the third best based on CHI by
producing optimum cluster formation in 16.66 % instances. Normalized
cut is a graph specific quality measure and based on it the Walktrap has
performed better on the majority of the datasets, i.e., in 55.55 % cases.
Whereas, PGRW has been in the second place with better performance
on 11.11 % datasets. Finally, based on modularity index, the proposed
approach again performed better in 44.44 % cases and this achieves first
rank. Likewise, the previous indices, Walktrap has been the second best
performer here by achieving better results than others in 33.33 % cases.
Fig. ranking lists a ranking score achieved by each of the competing
methods on the six cluster validity indices over the 18 datasets. A higher
rank score indicates better overall performance. It can be seen that the
proposed PGRW clustering method performance is better in the majority
of the cases. The method Walktrap has been the second best and its
performance is very close to the proposed method.

6.3. Synthesis

The proposed approach addressed the task of clustering graphs
keeping in view the time and space constraints. The current proposal
utilized an adjacency matrix to store the graph. This causes the space
complexity of PGRW to be O(n2). Where, n is the number of nodes in the
graph. However, internally each cell of the adjacency matrix is of a
structure type to store clustering related information about each node.
This has a constant time effect on the storage requirement. Therefore,
the space requirement of PGRW remains O(n2). The overall execution
time of the proposed approach is dominated by the O(cn2) bound.

Where, n is the number of nodes in the graph and c is the number of
clusters. The PGRW approach initiated a walk from the highest degree
node. The path of the walking agent was a pure random process limited
to the nodes connected via edges having weight greater than zero. This
process has a certain probability that once a walk has been initiated, it
may have different results if repeated. This will cause slightly different
cluster formation if the process is repeated. This is a limitation of the
current proposal. However, it is also true for other random walk-based
clustering methods. Fig. 12 shows the rank score of the three
competing approaches for various numbers of nodes. The execution time
of PGRW is slightly at a higher side, however, PGRW produces 46 %
better clusters consuming 5% addition time. Experiments performed on
larger datasets suggest that the performance of the proposed approach is
comparable to other methods (excluding those written using parallel
programming paradigm). However, it must be mentioned here that the
performance of the proposed work is not only dependent on the nodes in
the input graph, but it varies due to the graph density. For example, for a
graph with 1000 nodes and edge connection density around 60 % the
proposed approach may take less execution time than for a graph with
600 nodes and edge connection density around 95 %. This is because the
random walking agent jumps from one node to the other using the edges
resulting in increased execution time. The closest competitor to the
proposed method has been the Walktrap methods and the same has been
confirmed through the t-test.

7. Conclusion

This work proposed a novel random walk-based approach to cluster
the data represented as a graph. Extracting clusters from big graphs is an
active area of research. The proposed solution addressed this problem by
presenting a pseudo-guided random walk procedure to find strongly
connected groups. The solution presented here is named Pseudo-Guided
Random Walk (PGRW). Initially, the input dataset was transformed into
a graph where nodes represented the objects and edges represented the
link between them. The PGRW started with finding the significance of
connections between nodes by identifying their common friends in the
network. Instead of the raw edge weight mentioned in the datasets, the
count of such common friends, called the friends-of-friends, was then
placed as an edge weight between two nodes. This enabled to identify
strongly connected nodes based on commonalities. These weights were
then utilized to find the most influential node in the graph. The pseudo-
guided random walk started from the node having maximum weight.
The walking agent randomly picked any of its neighbours to be visited,
however, this choice was limited to only those nodes where the edge

Fig. 12. Ranking scores of the eight competing methods.

Z. Halim et al.

Journal of Computational Science 51 (2021) 101281

16

weigh based on friends-of-friends concept was greater than or equal to a
threshold. The traversed neighbours in this manner were then added to
the same cluster. This process stopped when the agent could not find any
node to visit. The visited nodes were then extracted from the original
graph and the same process was repeated for the rest of the network. The
proposed approach was compared with seven closely related graph
clustering methods from the same domain, namely, limited random
walk, pairwise clustering, personalized page rank clustering, GAKH
(genetic algorithm krill herd) graph clustering, mixing time of random
walks, density-based clustering of large probabilistic graphs, and
Walktrap. The comparison was made using six cluster validity and other
indices; Davies-Bouldin index (DBI), Dunn index (DI), Silhouette coef-
ficient (SC), Calinski-Harabasz index (CHI), modularity index, and
normalized cut. For experiments, 18 real-world benchmark datasets
were utilized. Results suggested a better performance of the proposed
approach in the majority of the cases.

The random walk-based approaches have shown promising results in
clustering complex large networks. This work can be extended in mul-
tiple ways in the future. Parallel computing paradigm is an option where
multiple walking agents can be initiated simultaneously. This shall
produce results quickly. The current proposal has assigned edge weights
based on the friends-of-friends concept which again utilizes common
friends using connectivity. In the future, these common friends can be
identified using various attributes of the graph other than the connec-
tivity aspact. There are many optimization approach available, like ge-
netic algorithms, ant colony algorithm, and evolution strategy. In the
future, it would be interesting to see how these techniques optimizes the
clusters extracted from a graph using pseudo-guided random walk.

CRediT authorship contribution statement

Zahid Halim: Conceptualization, Methodology, Software, Supervi-
sion. Hussain Mahmood Sargana: Data curation, Writing - original
draft. Aadam: Visualization, Investigation, Software. Uzma: Software,
Validation. Muhammad Waqas: Resources, Writing - review & editing.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgment

(Blinded as per journal policy) The authors would like to thank
Ghulam Ishaq Khan Institute of Engineering Sciences and Technology,
for providing research funding and facilities. The authors are indebted to
the editor and anonymous reviewers for their helpful comments and
suggestions.

References

[1] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor.
Comput. Sci. 209 (1) (1998) 1–45.

[2] G. Engels, A. Schürr, Encapsulated hierarchical graphs, graph types, and meta
types, Electron. Notes Theor. Comput. Sci. 2 (1995) 101–109.

[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley and Sons, 2012.
[4] A.A. Diwan, S. Rane, S. Seshadri, S. Sudarshan, Clustering techniques for

minimizing external path length, VLDB Vol. 96 (1996) 3–6.
[5] A.J. Enright, S. Van Dongen, C.A. Ouzounis, An efficient algorithm for large-scale

detection of protein families, Nucleic Acids Res. 30 (7) (2002) 1575–1584.
[6] H. Zhang, J. Raitoharju, S. Kiranyaz, M. Gabbouj, Limited random walk algorithm

for big graph data clustering, J. Big Data 3 (1) (2016) 26.
[7] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, M. Saerens, Clustering

using a random walk based distance measure, Proceedings of the 13th Symposium
on Artificial Neural Networks (2005) 317–324.

[8] K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S.K. Pham, E. Smirnova, Pagerank
based clustering of hypertext document collections, Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2008) 873–874.

[9] S. Kale, C. Seshadhri, Combinatorial approximation algorithms for maxcut using
random walks, 11th Annual Conference on Innovation and Technology in
Computer Science Education (2011) 367–388.

[10] Z. Halim, Uzma, Optimizing the minimum spanning tree-based extracted clusters
using evolution strategy, Cluster Comput. 21 (1) (2018) 377–391.

[11] D. Harel, Y. Koren, On clustering using random walks, FSTTCS (2001) 18–41.
[12] M. Girvan, M.E. Newman, Community structure in social and biological networks,

Proc. Natl. Acad. Sci. 99 (12) (2002) 7821–7826.
[13] H. Zhou, Distance, dissimilarity index, and network community structure, Phys.

Rev. E 67 (6) (2003) 061901.
[14] H. Zhou, R. Lipowsky, Network brownian motion: a new method to measure

vertex-vertex proximity and to identify communities and subcommunities, In
Lecture Notes in Computer Science 3038 (2004) 1062–1069.

[15] L. Hagen, A.B. Kahng, A new approach to effective circuit clustering, Proceedings
of the 1992 IEEE/ACM International Conference on Computer-Aided Design (1992)
422–427.

[16] P. Pons, M. Latapy, Computing communities in large networks using random
walks, ISCIS Vol. 3733 (2005) 284–293.

[17] Y. Hu, M. Li, P. Zhang, Y. Fan, Z. Di, Community detection by signaling on complex
networks, Phys. Rev. E 78 (1) (2008) 016115.

[18] E. Weinan, T. Li, E. Vanden-Eijnden, Optimal partition and effective dynamics of
complex networks, Proc. Natl. Acad. Sci. 105 (23) (2008) 7907–7912.

[19] Z. Halim, M. Waqas, A.R. Baig, A. Rashid, Efficient clustering of large Uncertain
graphs using neighborhood information, Int. J. Approx. Reason. 90 (2017)
274–291.

[20] S.M. Van Dongen, Graph Clustering by Flow Simulation, Ph.D. Thesis, Dutch
National Research Institute for Mathematics and Computer Science, University of
Utrecht, Netherlands, 2000.

[21] X. He, H. Zha, C.H. Ding, H.D. Simon, Web document clustering using hyperlink
structures, Comput. Stat. Data Anal. 41 (1) (2002) 19–45.

[22] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. 22 (8) (2000) 888–905.

[23] M. Meila, J. Shi, Learning segmentation by random walks, Advances in Neural
Information Processing Systems 12 (2001) 873–879.

[24] D. Auber, M. Delest, Y. Chiricota, Strahler based graph clustering using
convolution, Information Visualisation, 2004. IV 2004. Proceedings. Eighth
International Conference on Information Visualization (2004) 44–51.

[25] B. Yang, J. Liu, An efficient probabilistic approach to network community mining,
Rough Sets and Knowledge Technology 1 (1) (2007) 267–275.

[26] M. Pavan, M. Pelillo, Dominant sets and pairwise clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 29 (1) (2007) 167–172.

[27] J. Hopcroft, O. Khan, B. Kulis, B. Selman, Natural communities in large linked
networks, Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2003) 541–546.

[28] M.E. Newman, Fast algorithm for detecting community structure in networks,
Phys. Rev. E 69 (6) (2004) 066133.

[29] P.S. Bradley, U.M. Fayyad, C. Reina, Scaling clustering algorithms to large
databases, KDD (1998) 9–15.

[30] G.T. Toussaint, Proximity graphs for nearest neighbor decision rules: recent
progress, Interface 2002, 34th Symposium on Computing and Statistics (2002) 1–6.

[31] H. Zanghi, C. Ambroise, V. Miele, Fast online graph clustering via Erdos–Rényi
mixture, Pattern Recognit. 41 (12) (2008) 3592–3599.

[32] M. Akbari, H. Izadkhah, GAKH: a new evolutionary algorithm for graph clustering
problem, 2019 4th International Conference on Pattern Recognition and Image
Analysis (IPRIA) (2019) 159–162.

[33] K. Avrachenkov, M. El Chamie, G. Neglia, Graph clustering based on mixing time of
random walks, IEEE International Conference on Communications (2014)
4089–4094.

[34] Z. Halim, J.H. Khattak, Density-based clustering of big probabilistic graphs, Evol.
Syst. 10 (3) (2019) 333–350.

[35] R. Morisi, G. Gnecco, A. Bemporad, A hierarchical consensus method for the
approximation of the consensus state, based on clustering and spectral graph
theory, Eng. Appl. Artif. Intell. 56 (2016) 157–174.

[36] S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large
databases, ACM Sigmod Record Vol. 27 (1998) 73–84. No. 2.

[37] S. Guha, R. Rastogi, K. Shim, ROCK: A robust clustering algorithm for categorical
attributes, Inf. Syst. 25 (5) (2000) 345–366.

[38] S.A. Tabrizi, A. Shakery, M. Asadpour, M. Abbasi, M.A. Tavallaie, Personalized
pagerank clustering: a graph clustering algorithm based on random walks, Phys. A
Stat. Mech. Its Appl. 392 (22) (2013) 5772–5785.

[39] E.E. Papalexakis, L. Akoglu, D. Ience, Do more views of a graph help? Community
detection and clustering in multi-graphs, 16th International Conference on
Information Fusion (Fusion) (2013) 899–905.

[40] W.W. Zachary, An information flow model for conflict and fission in small groups,
J. Anthropol. Res. 33 (4) (1977) 452–473.

[41] S. Daminelli, J.M. Thomas, C. Durán, C.V. Cannistraci, Common neighbours and
the local-community-paradigm for topological link prediction in bipartite
networks, New J. Phys. 17 (11) (2015) 113037.

[42] Z. Halim, O. Ali, G. Khan, On the efficient representation of datasets as graphs to
mine maximal frequent itemsets, IEEE Trans. Knowl. Data Eng. (2019) 1–18.

[43] S. Iqbal, Z. Halim, Orienting conflicted graph edges using genetic algorithms to
discover pathways in protein-Protein interaction networks, IEEEACM Trans.
Comput. Biol. Bioinform. (2020) 1–16.

[44] C. Sherlock, A.H. Thiery, G.O. Roberts, J.S. Rosenthal, On the efficiency of pseudo-
marginal random walk Metropolis algorithms, Ann. Stat. 43 (1) (2015) 238–275.

Z. Halim et al.

http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0005
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0005
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0015
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0020
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0020
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0045
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0045
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0045
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0050
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0050
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0070
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0070
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0070
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0080
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0080
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0085
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0085
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0090
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0090
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0095
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0095
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0095
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0105
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0110
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0110
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0115
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0115
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0125
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0125
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0130
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0130
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0140
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0140
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0155
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0155
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0160
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0160
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0160
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0165
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0165
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0165
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0170
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0170
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0175
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0175
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0175
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0180
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0180
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0185
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0185
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0190
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0190
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0190
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0195
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0195
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0195
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0200
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0200
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0205
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0205
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0205
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0210
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0210
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0215
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0215
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0215
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0220
http://refhub.elsevier.com/S1877-7503(20)30577-9/sbref0220

Journal of Computational Science 51 (2021) 101281

17

Zahid Halim received the B.S. degree in Computer Science
from the University of Peshawar, Pakistan, in 2004, M.S. de-
gree in Computer Science from the National University of
Computer and Emerging Sciences, Pakistan, in 2007, and also
the Ph.D. degree in Computer Science from the National Uni-
versity of Computer and Emerging Sciences, Pakistan, in 2010.
He was with the National University of Computer and
Emerging Sciences, Islamabad, Pakistan, as a Faculty Member
from 2007 to 2010. Currently he is an Associate Professor with
Ghulam Ishaq Khan Institute of Engineering Sciences and
Technology, Pakistan. His current research interests include
machine learning and data mining with an emphasis on prob-
abilistic/uncertain data mining. Dr. Halim is a member of the
IEEE Computational Intelligence Society.

Hussain Mahmood Sargana received the BS degree in Com-
puter Systems Engineering from Bahauddin Zakariya Univer-
sity, Multan, Pakistan, in 2012, M.S. degree in Computer
Systems Engineering from Ghulam Ishaq Khan (GIK) Institute
of Engineering Sciences and Technology, Pakistan, in 2017. He
is working a Lecturer at Department of Computer Science, KF
University of Engineering & Information Technology, Rahim
Yar Khan, Pakistan. His research interest includes data mining
and big data analytics.

Aadam received his BS degree in Computer Science from the
University of Haripur, Pakistan, in 2018. He is working as a
Research Assistant at the Machine Intelligence Research Group
(MInG), Faculty of Computer Science and Engineering, Ghulam
Ishaq Khan (GIK) Institute of Engineering Sciences and Tech-
nology, Pakistan. His research interests include deep learning,
reinforcement learning, and artificial intelligence.

Uzma received the Master of Computer Science degree from
the AWKU in 2013 and the M.S. degree in Computer System
Engineering from Ghulam Ishaq Khan Institute of Engineering
Sciences and Technology, Pakistan in 2016. She has completed
working towards her PhD from the Faculty of Computer Sci-
ence and Engineering, GIK Institute, Pakistan. She is a member
of the Women Engineers Society. Uzma’s research interest in-
cludes data mining, machine learning, and bioinformatics.

Muhammad Waqas received the B.Sc. and M.Sc. degrees from
the Department of Electrical Engineering, University of Engi-
neering and Technology, Peshawar, Pakistan, in 2009 and
2014, respectively. He received his Ph.D. degree from the
Beijing National Research Center for Information Science and
Technology, Department of Electronic Engineering, Tsinghua
University, Beijing, China. He is currently working as an As-
sistant Professor at GIKI, Pakistan. He has several research
publications in IEEE journals and conferences. His current
research interests are in the areas of networking and commu-
nications, including 5G networks, D2D communication
resource allocation and physical layer security and information
security, mobility investigation in D2D communication, Fog
computing, and MEC.

Z. Halim et al.

	Clustering of graphs using pseudo-guided random walk
	1 Introduction
	1.1 Key contributions

	2 Related work
	2.1 Clustering using random walk
	2.2 Global graph clustering methods
	2.3 Hierarchical clustering techniques
	2.4 Key limitations of the previous work

	3 Proposed solution
	3.1 Basic notations
	3.2 Proposed strategy

	4 Experiments
	4.1 Datasets
	4.2 Other competing approaches
	4.2.1 Limited random walk (LRW)
	4.2.2 Pairwise clustering (PC)
	4.2.3 Personalized page rank clustering (PPC)
	4.2.4 Genetic algorithm krill herd for graph clustering (GAKH)
	4.2.5 Mixing time of random walk (MTRW)
	4.2.6 Density-based clustering of large probabilistic graphs (DBCLPG)
	4.2.7 Walktrap

	4.3 Evaluation metrics
	4.3.1 Davies-Bouldin Index (DBI)
	4.3.2 Dunn index (DI)
	4.3.3 Calinski-Harabasz index (CHI)
	4.3.4 Silhouette coefficient (SC)
	4.3.5 Modularity index
	4.3.6 Normalized cut

	4.4 Comparison
	4.4.1 Comparison based on DBI
	4.4.2 Comparison based on DI
	4.4.3 Comparison based on SC
	4.4.4 Comparison based on CHI
	4.4.5 Comparison based on modularity index
	4.4.6 Comparison based on normalized cut
	4.4.7 Comparison based on execution time

	4.5 Performance comparison using other weight assignment methods

	5 Statistical significance
	6 Discussion
	6.1 Brief synopsis
	6.2 Results analysis
	6.3 Synthesis

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

