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A B S T R A C T   

Clustering is an unsupervised learning task that models data as coherent groups. Multiple approaches have been 
proposed in the past to cluster large volumes of data. Graphs provide a logical mapping of many real-world 
datasets rich enough to reflect various peculiarities of numerous domains. Apart from k-means, k-medoid, and 
other well-known clustering algorithms, utilization of random walk-based approaches to cluster data is a 
prominent area of data mining research. Markov clustering algorithm and limited random walk-based clustering 
are the prominent techniques that utilize the concept of random walk. The main goal of this work is to address 
the task of clustering graphs using an efficient random walk-based method. A novel walk approach in a graph is 
presented here that determines the weight of the edges and the degree of the nodes. This information is utilized 
by the pseudo-guidance model to guide the random walk procedure. This work introduces the friends-of-friends 
concept during the random walk process so that the edges’ weights are determined utilizing an inclusive cri-
terion. This concept enables a random walk to be initiated from the highest degree node. The random walk 
continues until the walking agent cannot find any unvisited neighbor(s). The agent walks to its neighbors if it 
finds a weight of one or more, otherwise the agent’s stopping criteria is met. The nodes visited in this walk form a 
cluster. Once a walk comes to halt, the visited nodes are removed from the original graph and the next walk starts 
in the remaining graph. This process continues until all nodes of the graph are traversed. The focus of this work 
remains random walk-based clustering of graphs. The proposed approach is evaluated using 18 real-world 
benchmark datasets utilizing six cluster validity indices, namely Davies-Bouldin index (DBI), Dunn index (DI), 
Silhouette coefficient (SC), Calinski-Harabasz index (CHI), modularity index, and normalized cut. This proposal 
is compared with seven closely related approaches from the same domain, namely, limited random walk, 
pairwise clustering, personalized page rank clustering, GAKH (genetic algorithm krill herd) graph clustering, 
mixing time of random walks, density-based clustering of large probabilistic graphs, and Walktrap. Experiments 
suggest better performance of this work based on the evaluation metrics.   

1. Introduction 

Graphs provide a fundamental area of research in computing and 
mathematics having its history spanning over a century [1]. A graph 
typically consists of nodes representing independent entities and edges 
indicating the connectivity between them. There are many different 
types of graph with their specifications and provisions [2]. In the present 
age of technology, data is a fundamental asset for any organization. To 
reveal the best results for information processing or to have business 
insights using unsupervised/semi-supervised data, one has to perform 
pattern recognition. Two key tasks of pattern recognition include: 

classification and clustering. Where, classification is a supervised 
learning task and clustering being unsupervised [3]. The supervised 
learning utilizes training data for learning and later classifies unknown 
objects into the predefined categories. Whereas, the process of finding 
similar groups in the data with respect to some common features is 
called clustering. This comes under the domain of unsupervised 
learning. Clustering is different from classification majorly because of 
the lack of prior knowledge about the classes hidden/available in the 
data. Graphs can be treated as hierarchical structures connecting nodes 
through edges. Finding useful patterns or similar communities in a graph 
data is therefore referred to as graph clustering. Such clustering is to 
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cover only those nodes/edges which have the maximum relationship 
within a subgraph and a few inter-cluster connections. Graph-based data 
or ordinary data represented as a graph provide an essential digital 
representation for the algorithms to facilitate information processing. 

In a transactional database system, the clustering result can be used 
to collect the relevant queries in a data dictionary for efficient infor-
mation retrieval in the future. Previously, such work has been done for 
databases. For instance, Diwen et al. [4] proposed a solution to store the 
queries in a tree-like structure. Other researchers have proposed 
graph-based concepts to identify shortest paths. For the domain of bio-
informatics, clustering of the graphs is done to identify gene expression 
data, protein-protein interaction, epidemic expansion, and viral 
spreading. For example, Enright et al. [5] worked on SIR (susceptible → 
infective → removed) disease. It is an epidemic disease found in dense 
population and has several types of infections. Their work uses graph 
clustering to identify epidemic disease with cluster-like structure. An 
electroencephalogram (EEG) is a brain signal captured using an EEG cap 
to observe disorders of brain’s electrical pulse. Graph clustering can also 
be done in such type of data to find neural structures. Clustering the data 
extracted from social networking websites can help to identify the 
voting trend in elections, influence, and popularity of a person with 
maximum node degree. Apart from social networks, clustering can 
identify the latest trends in the stock market as well. 

Previous works on clustering using random walk have overlooked 
the aspect of “guiding” the walk such that it forms better quality clusters 
without compromising on the randomness feature. Past approaches 
either guide the random walker to an extent that it totally eliminates the 
underlying randomness of the process or the procedure is completed 
unguided. All this forces the methods to stuck in a local optimum. 
Additionally, the previous methods start the clustering from an arbitrary 
node in the graph. This has the limitation of prolonging the clustering 
process in reaching a better clustering formation. An initial calculated 
guess to start the cluster formation will not only result in reducing 
cluster formation time but will also enable to form clusters with higher 
cohesion. The current proposal addresses these limitations of the past 
works. Keeping in view the abovementioned domains where clustering 
has been utilized previously, this work focus on developing a clustering 
approach that utilizes graphs for data representation. Since clustering is 
an unsupervised task, the key challenge here is to produce clusters 
having strong intra-cluster similarity and higher inter-cluster dissimi-
larity. For the graph-based clustering approach, this work focuses on the 
formation of coherent groups through random walk. This is done by 
introducing the novel friends-of-friends concept as a guiding principal 
for the random walk to explore neighbours. Although various proposals 
can be found in the past that utilizes graphs to cluster the data, however, 
random walk is a technique yet to be fully explored for this task. Finding 
clusters through random walk has been previously done by Enright et al. 
[5] as Markov clustering algorithm and through limited random walk in 
Zhang et al. [6]. This work presents a novel approach in terms of 
neighbourhood exploration. The randomness in the walk is minimized 
by guiding the process towards more suited nodes to be explored. 
However, it is not completely eliminated. The proposed approach as-
signs higher significance to the graph node having maximum connec-
tivity. This enables the algorithm to start clustering with the most 
influential node in the community. Since clustering is unsupervised, 
each clustering algorithm has its pros and cons. Random walk-based 
clustering can be efficient in terms of randomly moving to its neigh-
bors by examining their importance. The walking agent would move to 
its neighbour based on a probability, inflation, and modulation. There 
can be other factors incorporated into the approach to form better 
clusters. For instance, the additional feature adopted here is the 
friends-of-friends concept to grow the clusters using a pseudo-guidance 
mechanism. At the core of the current proposal is the friends-of-friends 
concept to guide the random walk process. Traditionally, to form clus-
ters via a random walk, a node is arbitrarily added to the existing group 
based on it being a neighbor. However, the complete randomness of the 

process may cause a less suitable node to be added to the cluster. The key 
intuition here is to not only consider the existing edge (and its weight) 
between the cluster and the node under consideration for joining the 
group, but also to identify how many common neighbors exist between 
the two. Consider the cluster Ci and two nodes nj and nj+1 to be delib-
erated for inclusion in Ci. If the sum of edge weights between the nodes 
under consideration is same for nj and nj+1, however nj has more com-
mon neighbors (friends-of-friends) within Ci than nj+1, then the node nj 
is more suitable (based on commonalities) to be added to the cluster Ci in 
comparison to the node nj+1. 

1.1. Key contributions 

This work presents a random walk-based clustering methods for the 
data representable as a graph. The random walk procedure is directed by 
a pseudo-guidance procedure. The procedure guides the random walker 
to consider visiting densely connected nodes first. The densely con-
nected portions of the graph are identified based on the number of 
common neighbors between two nodes instead of relying on their raw 
degrees. The proposal is evaluated using 18 real-world benchmark 
datasets utilizing six cluster validity indices, namely Davies-Bouldin 
index (DBI), Dunn index (DI), Silhouette coefficient (SC), Calinski- 
Harabasz index (CHI), modularity index, and normalized cut. It is 
compared with seven closely related approaches from the same domain, 
namely, limited random walk, pairwise clustering, personalized page 
rank clustering, GAKH (genetic algorithm krill herd) graph clustering, 
mixing time of random walks, density-based clustering of large proba-
bilistic graphs, and Walktrap. The approach proposed in this work can be 
utilized to identify clusters in diversified fields of study. Random walk- 
based clustering is a suitable solution for determining the best clusters in 
the data transformed into a graph. For example, this work can be used to 
find clusters in the data dictionary of production databases where 
queries are stored. A cluster can be formed by identifying the queries on 
the database. This is helpful when next time one tries to write the same 
query, it would be the part of same database which was loaded previ-
ously. In brief, the key contributions of this work include:  

• Utilizing graphs to efficiently store and cluster the data  
• A “guided” random walk-based approach to extract clusters 
• Incorporation of the friends-of-friends concept to guide the clus-

tering process towards better nodes to be explored  
• Incorporating the commonality concept based on mutual friends to 

form clusters instead of relying on the raw node degree  
• Avoiding any biases caused by nodes with a higher degree to form 

clusters 

The rest of the paper is organized as follows. Section 2 covers the 
related work on clustering graphs. The section focuses on the clustering 
methods utilizing random walk. It also lists some related basic notions. 
Section 3 presents the proposed solution and explains its working pro-
cedure. Section 4 lists the detailed experiments and obtained results. All 
experiments are performed using benchmark datasets obtained from the 
UCI machine learning repository1 and other such venues. Section 5 
presents the statistical analysis of the obtained results. Discussion on the 
obtained results is covered in Section 6. The section also lists a few 
limitations of this work. Finally, Section 7 concludes this work with a 
few of the future directions. 

2. Related work 

Clustering is a key data mining/machine learning task forming bases 
for many higher-level objectives to be achieved by the modern 
computing systems. Various algorithms have been proposed for 

1 https://archive.ics.uci.edu/ml/index.php 
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clustering data. Natural clusters are formed by the existence of common 
characteristics between members of the same group. Considering 
graphs, the most related links or edges will likely make a cluster of the 
same type. Various proposals have been presented in the past to cluster 
data. This section covers clustering approaches for graphs specially 
those utilizing the random walk. Recently, many approaches have been 
proposed to implement random walked-based clustering techniques 
[7–10]. Diversified works have been done for random walk due to the 
fact that the walking agent, at times, travels beyond the boundaries of 
the core neighbourhood. A typical random walk starting from a seed 
node is more likely to stay in the vicinity of the seed vertex forming a 
coherent group. Due to this reason, the random walk may work well for a 
typical clustering problem. 

2.1. Clustering using random walk 

Harel et al. [11] introduce a random walk-based technique in their 
work. They propose two operators to change the edge weight in such a 
way that the strength of inter-cluster edges is reduced and the 
intra-cluster edges increases. Iteratively, the inter-cluster edge weight 
decreases approaching to zero to differentiate them with other clusters. 
Their technique is somewhat similar to the work in Girvan et al. [12] 
where edge weight between two nodes is utilized for grouping. 

Zhou et al. [13] uses random walk between two nodes to group the 
data represented as a graph. They find the distance dij between node i 
and node j as an average distance between two nodes in terms of number 
of edges connecting them. The nodes in the same cluster will be closely 
related to each other. The authors define two types of vertices in a 
cluster known as global attractor and local attractor. The global attractors 
are defined as the closely related neighbours, i.e., anywhere in the 
closest domain of vertex i. Whereas, the local attractors are defined as the 
immediate neighbours of vertex i. Using this concept, two types of 
communities are extracted each containing subgraphs of their own. The 
work in [14] adopts biased random walker technique. This work finds 
biasness as the walking agent should visit high degree neighbours 
frequently. For this, a proximity index is used to find the biased neigh-
bouring node. The approach can be classified as a hierarchical clustering 
method. Hagen et al. [15] uses random walk to cluster circuits in a 
very-large-scale integration (VLSI) design problem through random 
walk. They utilize the concept of cycles to find clusters. The worst case 
time complexity of their solution is O(n3) whereas, the space complexity 
is O(n2). 

Pons et al. [16] uses a different measuring method for computing 
distance between nodes through random walk. The distance is calcu-
lated between two nodes using a fixed number of steps utilizing the 
probability matrix. The number of steps is large enough to traverse the 
substantial portion of the graph. However, for a larger number of steps, 
the stopping criterion is met. Hu et al. [17] finds the neighbour vertex 
through a signaling method which resembles diffusion. Initially, on the 
first move, source vertex transmits unit signal to its neighbours. Next, 
these neighbours send many unit signals to their neighbours. This pro-
cess continues until a threshold is reached. The procedure is repeated 
from the next node by considering the current node as the source. 
Weinan et al. [18,19] uses Markova chain method to describe a random 
walk procedure on the subgraph. The vertices of this subgraph represent 
the clusters in the original graph. This process gives a suitable deter-
mining method to extract coherent clusters. Van Dongen et al. [20] also 
uses the Markov clustering algorithm to find clusters. Their method finds 
movement of the random walker. The Markov clustering algorithm is the 
baseline approach that utilizes random walk through a probability ma-
trix for clustering. Probability matrix is obtained by multiplying the 
adjacency matrix with the inverse degree matrix. The sum of each col-
umn of the transition matrix is computed using Eq. (1).  

P = A DG− 1                                                                                   (1) 

Where, P is the transition probability matrix, A is the adjacency matrix, 
and DG is the degree matrix. Degree matrix is the diagonal matrix with 
degree of each vertex mentioned at the diagonal. The probability matrix 
sums-up all columns to one. 

Markov clustering algorithm (MCL) [6] is based on the idea of 
Markov chain, however, here transition is done with probability matrix 
only. Graph clustering using random walk is flanked by this algorithm. A 
walk starts from seed vertex and moves to its neighbour if there is a 
higher probability between them. Markov clustering algorithm repli-
cates the stream within the cluster. It uses inflation and normalization to 
increase the stream within one cluster and reduces the flow between 
different clusters. MCL procedure is time-inhomogeneous for which the 
transition matrix varies over time. The MCL algorithm starts the random 
walk from all vertices simultaneously, i.e., there are n agents walking in 
the graph at the same time. The walk can only continue after all agents 
have completed a walking step and the resulting probability matrix has 
been inflated and normalized. Each iteration of the algorithm has two 
steps, one is expansion and the other one is inflation. Expansion is uti-
lized for computing probability and inflation is used for the weight 
enhancement between pairs of nodes. 

Zhang et al. [6] uses limited random walk (LRW) algorithm utilizing 
the concepts presented in [20]. Inflation and normalization are applied 
during each step of the random walk. Applying inflation operator to the 
matrix causes it to increase the existing small differences. Their work is 
time-homogeneous Markov chain procedure. They start the walk from a 
single seed vertex and perform inflation on the probability values of 
each walking step rather than from many different vertices like MCL. 
The approach has an advantage that it eliminates the need of multiple 
walks since a single seed vertex is sufficient to explore the vertices 
within its vicinity. This procedure is suitable for local graph clustering 
problems. However, if there is a need to start multiple walks, these can 
be computed by the parallel computing paradigm. He et al. [21] extend 
the work presented in [22] by fusing it with the k-means algorithm. 
Meila et al. and Shi et al. [23] perform experiments to cut the graph and 
use transition probabilities and the stationary distribution for a walking 
agent to explore it. Authors link the mathematical transition probabili-
ties with their proposal. Min-cut intuition approach can be used in many 
kinds of graph like directed, undirected, weighted, and unweighted with 
an effective maximum flow algorithm. 

Auber et al. [24] assume similarity matrix from the vertex set to 
cluster a graph. They define a discrete formula to turn these values into 
discrete set. Afterwards, convolution is applied on the discrete set to 
cluster the graph. This process is iterated to form a cluster hierarchy. 
Yang et al. [25] perform graph clustering through random walk. They 
use k-step transition through a probability matrix to find a connection 
between two nodes. According to the k-step transition, adjacency matrix 
is stored to find a cut point in the matrix. This cut is then used to find a 
point to divide the graph into two sets. The process continues until all 
elements of a diagonal matrix get traversed. This process usually comes 
under the domain of top-down approach. 

Another approach somewhat similar to a merging point method in 
space is presented in [26]. The key intuition is to merge two points that 
are closely related to each other according to their characteristics. This 
process of merging the clusters continues until all points are traversed or 
a stopping criteria is met. Such method is generally called pairwise 
clustering in the literature. Zhang et al. [6] utilizes two approaches for 
clustering in their work. They use both local and global clustering 
techniques. For the big graph data and dynamic datasets, global clus-
tering method gets computationally expensive. However, the excessive 
computation can be reduced by storing the graph in an efficient data 
structure. The authors in [33] present Mixing Time of Random Walk 
(MTRW) for clustering. It is a randomized algorithm that extracts clus-
ters from a graph according to a pre-specified metric. It finds the locally 
optimal solutions. The proposal is distributed and asynchronous. The 
work in [34] present Density-Based Clustering of Large Probabilistic 
Graphs (DBCLPG). Their method extract subgraphs G` from an input 
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graph G, such that G` ⊆ G and the G` density is above a certain threshold. 
They exploit the density of the extracted clusters in order to keep them 
growing. 

2.2. Global graph clustering methods 

This section focuses on the global graph clustering methods. Previous 
methods on global clustering techniques work for a few million vertices 
in dynamic and sparse graphs [27,28]. In a global clustering each vertex 
is assigned its own cluster. Whereas, in a local clustering method cluster 
assignment is done only for a certain number of nodes. Clustering can be 
done on all the data points at once or this can be performed iteratively. 
To cluster the large databases simultaneously, online clustering algo-
rithm scans all or at least some portion of the data at once [29]. This 
scheme enables to provide a solution for online analytical processing. 
Toussaint et al. [30] presents an analytical clustering approach to find 
spatial points using the nearest neighbour concept. For clustering the 
graph, a distance measure is used to capture the farthest points in the 
cluster rather than the closest ones. Zanghi et al. [31] work with graphs 
to present an approach for automated web page classification. They 
determine the online analytical clustering as k clusters. Various exper-
iments for different values of k are performed to evaluate the classifi-
cation performance. A tree structure is also introduced to make 
incremental clusters. The evaluation is performed for a set of documents 
taken from Yahoo!, indicating better classification performance. The 
work in [32] present a graph clustering method. It is a graph clustering 
algorithm based on krill herd (KH) and genetic algorithm (GA). It adopts 
the cycle and GA operators, using swarm intelligence, and utilizes the 
krill’s movements. 

2.3. Hierarchical clustering techniques 

Clustering results that provide multi-level clustering are categorized 
under the hierarchical clustering methods. Such methods are different 
from the flat clustering approach where there is no level-wise repre-
sentation of the data. Global clustering does not fulfil the problem of a 
single level. In hierarchical clustering, each cluster is assigned a level. 
Therefore, it is convenient to break them into desired number of clusters. 
This scheme depends on the complete observations of data for flat/hi-
erarchical clustering. Hierarchical clustering is further divided into two 
types of approaches. One is agglomerative (bottom-up) and the second 
being divisive (top-down). Morisi et al. [35] use hierarchical clustering 
method to investigate the approximate computation of the consensus 
state of a network. In their method clusters are presented in a hierarchal 
manner. They use spectral graph theory method where a graph is 
divided into a number of partitions. Each subgraph has its own spectral 
properties. This facilitates in quick convergence toward the centroid of 
each subgraph. Guha et al. [36] present an approach named clustering 
using representatives (CURE). It is a hierarchical clustering method 
which first partitions the dataset and then partially clusters the data 
points accordingly. After removing the outliers, the pre-clustered data in 
each partition is then grouped to produce the final clusters. This clus-
tering algorithm recognizes the arbitrarily shaped clusters and detects 
outliers. Guha et al. [37] present an approach called robust clustering 
using link (ROCK) to find the clusters. The ROCK framework exploits the 
link property when making decisions about the points to be merged into 
a single cluster. If the link between two points is large, it is probable that 
these two points belong to the same cluster. Clustering points based on 
only the closeness between them is not very efficient because two nearby 
points may be neighbors. However, even if two points of different 
clusters are neighbors, it is unlikely that the pair has a large number of 
common neighbors. 

2.4. Key limitations of the previous work 

Zhang et al. [6] utilized the limited random walk algorithm for both 

global and local graph clustering problems. In some cases, domain ex-
perts are usually involved in determining the clusters for a given seed 
node. This is called the local clustering task. For instance, if a user re-
quires to check the closely related friends and family members in a social 
network then the clustering approach should assign a node to traverse its 
neighbors only, instead of exploring the complete graph. The proposed 
approach in this work addresses this issue by limiting the random walk 
around the seed node. Additionally, the seed node is selected here based 
on a weighted connection strategy, instead of making a random choice. 
Tabrizi et al. [38] combined modularity function and random walk to 
precisely determine the clusters of a graph. They termed the strategy as 
personalized page rank clustering (PPC). Their method is a top down 
approach which recursively partitions subgraph until modularity gain is 
finished. Modularity function is not an appropriate choice to be com-
bined with a random walk as there are other more compatible functions 
that can work with the random walk. The proposed work here addresses 
this issue by guiding the random walk utilizing the friends-of-friends 
concept. This enables to extract logically connected groups. Pavan 
et al. [26] used hierarchical clustering technique to find clusters from a 
dataset. The computational time for hierarchical clustering is O(n2 log 
(n)). This work addresses the same problem of clustering efficiently by 
consuming lesser additional resources. Papalexakis et al. [39] finds well 
defined clusters across all views and addresses the problem of multi-
graph clustering. They used two approaches to find clusters. One is 
tensor-based decomposition principle and second is the minimum 
description length-based technique. However, the presence of additional 
noise can degrade the performance of their approach by reporting false 
positive groups. The present proposal addresses this by discarding the 
singleton clusters formed by the random walk-based solution. Table 1 
lists the key features of the closely related methods and the proposed 
approach. Where nc is the average cluster size, J denotes the number of 
vertices that the LRW procedure visits in each iteration and K is the 
number of iterations for the LRW procedure to converge. 

3. Proposed solution 

This section presents the proposed solution. The work in this paper 
addresses graph clustering using random walk-based approach. For this, 
first, the basic notations are defined and later the proposed strategy is 
explained. The main goal of this work is to address the task of clustering 
graphs using an efficient random walk method. For this, a novel walk 
approach in a graph is presented that determines the weight of the edges 
and the degree of the nodes. This information is utilized by the pseudo- 
guidance model to guide the random walk procedure. 

3.1. Basic notations 

Graph G(V,E) is represented as a combination of nodes N and edges 
E. Where V = {V1,V2,V3,…Vn} is the set of nodes (also called the vertices) 
and E={E1,E2,E3,…En} is the set of edges. Suppose Ag is the adjacency 
matrix formed from a graph G. The adjacency matrix Ag is the combi-
nation of 0 s and 1 s with nodes represented by the columns and rows. 
Intersection of a row and a column represents the existence or un-
availability of edge between these nodes. If a cell contains zero, it means 
there is no edge between the nodes, otherwise an edge exists between 
those nodes. Suppose D is the diagonal matrix in which the diagonal of a 
matrix represents the degree of each node in the graph. In a diagonal 
matrix, all other elements apart from the diagonal elements are zeros. 
Such matrix is utilized when graph having self-loops are used for map-
ping a real-world problem. 

This work mainly focuses on the clustering of graphs through 
random walk. It is therefore needed to describe the random walk on a 
graph here followed by the proposed strategy. Consider a graph with |N| 
nodes and |E| edges. These edges can either be directed or undirected. 
Random walk in a graph is a probabilistic process of visiting neighboring 
nodes. When a walking agent starts its walk from a seed vertex it can 
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jump to any of its neighbor subject to the connectivity through an edge. 
Walking agent is solely responsible for starting its walk from the seed 
vertex and then jump to any of its neighbor randomly. The selection of 
the neighbor depends on a specific criteria, at times, depending on the 
problem domain. 

Consider a graph G (V, E) having |V| vertices and |E| edges. A 
walking agent starts a random walk from the seed vertex V0 and moves 
to its neighbor on the basis of a probability distribution function. The 
probability of the neighbor node being visited is usually determined as, 
1/deg(vt). Where v is a vertex, Vt is the node at step t, and deg(v) is the 
degree of the node v. The probability of moving to a node is determined 
using Eq. (2). The probability is computed using the Markov clustering 
method.  

Pt(i) = Prob(vt = i)                                                                          (2)  

3.2. Proposed strategy 

In order to extract coherent clusters from a graph, first the degree of 
each node is determined. The node having maximum degree is selected 
as a source node for the random walk to start. This enables to select the 
most connected node as the starting point to initiate the walk. Consid-
ering an analogy of a social network, a well-connected person (assum-
ingly also influential in terms of disseminating information) will have 
the maximum degree. However, this node’s degree is not traditionally 
computed using the count of edges incident on a vertex. For this, the 
weight of the edges is first computed based on the friends-of-friends 
concept. Instead of utilizing the raw edge weight of a graph, the edge 
weight here is computed as the count of the number of common 
neighbors of the nodes connected by the edge under consideration. 
Consider the example graph listed in Fig. 1, there are seven nodes in the 
graph. For the edge between node A and node B the adjacency matrix- 
based data structure will have a value of 1 in the corresponding cell, 

indicating edge existence between the two nodes. However, based on the 
friends-of-friends concept, the number of common friends of these two 
nodes is 2, this becomes the edge weight for (A, B). Similarly, there is no 
common friend of the nodes B and F therefore a weight of 0 is assigned to 
the edge (B, F). Weights for the rest of the edges can be seen in Fig. 1. 
Node weight is calculated using these weights on the edges. 

This work presents an innovative approach for extracting clusters in 
a graph based on the intuition of commonalities between nodes. For this, 
the current proposal first focuses on finding the common neighbors for 
the nodes incident on an edge. Using this, the weight of the edge is 
determined between the two nodes. If there is no common neighbor, the 
weight assigned to this edge is 0. If there is one common neighbor, a 
weight of one is mentioned over the edge, and this process continues. 
After determining the edges’ weights, the random walk starts from the 
highest degree node to its neighbors. Where, degree of a node is 
computed by summing the edge weight incident on the node. An agent 
walks on the graph edges using a guidance mechanism. The agent is 
guided using the edge weights. It continues to walk as long as a weight 
greater than 0 or Tr (a user provided number is available). Using this, the 
agent moves to the neighbors. The stopping criteria for the agent is met 
if all non-zero edges are traversed or there is no direct path available for 
the agent to reach another node from the current 

position. Once a walk is completed by the agent, the visited nodes are 
extracted from the original graph and these form a cluster. Afterwards, 
the agent starts its next iteration. However, for this, the edge and node 
weights are recomputed first for the remaining graph. This process it-
erates until all nodes in the original graph are processed. The singleton 
clusters obtained using this process are termed as noise and are therefore 
discarded. Fig. 2 visually displays working of the proposed solution. The 
proposed approach selects the most concentrated node as the seed to 
start the random walk. However, there is a possibility that a tie may 
occur between multiple nodes. To address this case, any one of the nodes 
ranked at the same level is selected as the seed. This is done randomly 
because the current proposal provides priority list to the random walker 

Table 1 
Key features of the proposed work and past methods.  

Methods Time 
complexity 

Space 
complexity 

No. of datasets used to 
evaluate 

Suitable for large 
graphs 

Evaluation metrics 
utilized 

Based on random Walk/ 
Friend-of-Friend 

Proposed O(cn2) O(n2) 7 √ 4 √ 
(Zhang et al. 2016)-LRW O(KJnc) O(n2) 5 √ 2 √ 
(Akbari et al., 2019)-GAKH O(cn2xI) O(In2) 10 x 2 X 
(Pavan et al. 2007)-PC O(n2 log(n)) O(n2) 3 x 2 X 
(Avrachenkov et al. 2014)- 

MTRW 
O(n3) O(n2) – – – √ 

(Tabrizi et al. 2013)-PPC O (n) O(n2) 12 √ 1 √ 
(Halim et al. 2019)-DBCLPG O(nxn) O(n2) 7 √ 3 √ 
(Pons et al. 2005)-Walktrap O(mn2) O(n2) 6 √ 4 √ 
(Papalexakis et al. 2013)- 

MULTICLUS 
O(k2m) O(n2) 5 x 2 X  

Fig. 1. A sample graph with edge weights computing using friends-of-friends concept.  
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to choose from instead of hard coding the walk. This can result in 
different clustering formations when the proposed algorithm is executed 
multiple times. The same is true for a pure random walk-based clustering 
solution. However, due to the current proposal’s pseudo-guidance 
mechanism the final clustering quality will be better than a pure 
random walk. The time complexity of the proposed solution is O(cn2). 
Where, c is the number of clusters and n is the number of nodes. It is 
worth mentioning that the tighter bound on the random walk is O(n3) for 
a graph with n nodes. However, the current proposal does not require 
the random walk procedure to be exhaustively executed for the com-
plete graph. Instead, it limits the walk based on the values of the 
threshold Tr and the number of clusters c. 

As shown in Fig. 2, the dataset is first converted into a graph-based 
representation (if it is already not in a graph format). This is followed 
by the steps of preprocessing, i.e., computing edges’ and nodes’ weight, 
and then the guided random walk procedure is adopted for clustering. 
The process gives clusters as the output by discarding those groups 
having one node only, i.e., singleton clusters. 

The random walking agent (random walker) in this approach starts 
its walk from the highest weighted node, later it randomly selects any of 
the neighboring nodes having non-zero edge weight between the current 
node and the neighbor. Since the edge weights are assigned based on 
commonalities between the adjacent nodes, this guidance mechanism 
enables to extract more coherent clusters using the random walk in the 
graph. Pseudocode of the proposed approach is listed as Fig. 3. The 
proposed approach receives two parameters, the dataset (D) and the 
threshold (Tr). Initially, the dataset is read pairwise and the graph rep-
resentation is formed by creating nodes for the data items and drawing 
an edge between two adjustment nodes. Next, the graph is stored in an 
adjacency matrix (M). The adjacency matrix is used here as a data 
structure to store the graph due to its lower time complexity in retrieving 
information in comparison to the adjacency list. The matrix M is 
multiplied by itself to compute the number of common neighbors be-
tween any two nodes. The loop from line 9–15 converts every number in 
the adjacency matrix that is greater than 0 to a 1 and the rest to a 0. This 
loop is a preprocessing step that is required to obtain the number of 
common neighbors between any two nodes. The adjacency matrix is 
multiplied by itself and the resultant matrix contains the number of 
common neighbors between any two nodes (with an exception of the 
values at the diagonal). In case, the loop from line 9–15 is omitted the 
computation of common neighbors via matrix multiplication will give 
erroneous values. The values at the diagonal of the matrix obtained after 
multiplication are ignored. An extra row is maintained in the adjacency 

matrix to store the nodes’ weight. This enables to obtain a node’s pre- 
computed weight in O(1) time. The weight of a node is the sum of 
weights of all the edges incident on it. Next, the clustering procedure is 
started by placing the random walking agent on the node with the 
highest weight. The agent randomly picks the next node from the 
neighbors of the starting node. However, visiting the node is decided 
based on the value of Tr and the edge weight. The variable Tr is a user 
provided threshold that determines the minimum number of common 
connectivity between a cluster and its neighbor to consider it for 
merging into the cluster. Each cluster grows as long as valid neighbors 
are available in its vicinity. Line 31 moves the random walking agent 
arbitrarily to any of its neighbor. Once the cluster stops growing, it is 
extracted from the original graph and the same process is repeated for 
the remaining graph. 

4. Experiments 

This section lists the conducted experiments and obtained results. 
For experiments, 18 benchmark datasets are utilized. The choice of these 
datasets is made based on their diversity and utilization in previous such 
studies. This section first explains the datasets, followed by the evalu-
ation metrics, and a brief about the competing approaches before listing 
the results. All experiments are performed on Intel Core i7 machine with 
3.2 GHz processor and 8 GB RAM. 

4.1. Datasets 

The experiments here are performed on 18 benchmark graph data-
sets. These are taken from various sources keeping domain and size di-
versity in view. These include: Karateclub, Mcldata, Dolphins, Lesmis, 
Facebook combined, Moreno health, Air traffic control, Wiki-Vote, 192bit, 
176bit, Citation, Protein Interaction, GEOM, ENRON, GRQC, CNetwork, 
CM Cnetwork, AP Cnetwork, and EP Cnetwork. The size of these datasets 
ranges from 34 nodes to 36692 nodes. Additionally, these datasets have 
a minimum of 78 and a maximum of 705084 edges. The size of a graph is 
dependent on both number of nodes and the number of edges. For a 
complete analysis either the number of nodes or the number of edges 
cannot be considered in isolation. For example, if a graph has say 
1000000 nodes with 0% density, i.e., no edges, considering such graphs 
for simulations will be inappropriate. Similarly, for a graph having 100 
% density, but with too few nodes, say 10 will also be unsuitable. 
Therefore, the choice of datasets for simulations in this work is made 
based on both the number of nodes and the number of connecting edges 

Fig. 2. Overall working of the proposed solution.  
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Fig. 3. Pseudocode of the proposed random walk-based clustering approach.  

Table 2 
Summary of the datasets utilized.  

Dataset No. of nodes No. of edges Domain Universal Resource Locator (URL) 

Karateclub 34 78 Social network http://konect.uni-koblenz.de/networks/ucidata-zachary 
Mcldata 200 2500 Images http://mcl.usc.edu/mcl-jcv-dataset/ 
Dolphins 62 159 Life science http://konect.uni-koblenz.de/networks/dolphins 
Lesmis 77 254 Miscelenious http://konect.uni-koblenz.de/networks/moreno_lesmis 
Facebook combined 4037 87933 Social network https://snap.stanford.edu/data/egonets-Facebook.html 
Moreno health 2539 12969 Social network http://konect.uni-koblenz.de/networks/moreno_health 
Air traffic control 1226 2615 Infrastructure http://konect.uni-koblenz.de/networks/maayan-faa 
Wiki-Vote 7115 103689 Wikipedia who-votes-on-whom network https://snap.stanford.edu/data/wiki-Vote.html 
192bit 14000 154000 Miscellaneous Networks http://networkrepository.com/192bit.php 
176bit 7000 82000 Miscellaneous Networks http://networkrepository.com/misc.php 
Citation 27400 705084 Scientometrics http://www.sommer.jp/graphs/ 
Protein Interaction 2361 75740 Bioinformatics http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm 
GEOM 7343 11898 Bioinformatics http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.htm 
ENRON 36692 183831 Email network http://snap.stanford.edu/data/email-Enron.html 
GRQC CNetwork 5242 14496 Scientometrics http://snap.stanford.edu/data/ca-GrQc.html 
CM Cnetwork 23133 93497 Scientometrics http://snap.stanford.edu/data/ca-CondMat.html 
AP Cnetwork 18772 198110 Scientometrics http://snap.stanford.edu/data/ca-AstroPh.html 
EP Cnetwork 12008 118521 Scientometrics http://snap.stanford.edu/data/ca-HepPh.html  
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in the graph.Table 2 lists the summary of these datasets. The karateclub is 
a social network of a university karate club which has 34 nodes and 78 
links. The karateclub network is divided into two groups by Zachary et al. 
[40]. The mcldata represent 24 source videos having resolution 
1920 × 1080 and 51 H.264/AVC encoded clips for each source 
sequence. The dataset consists of 200 nodes and 2500 edges between 
them. The protein Interaction dataset is about the predictions of cellular 
localization sites of proteins with 2361 nodes and 75740 edges. It has 
eight features per instance. The dolphins data is a directed social network 
of bottlenose dolphins. The nodes represent bottlenose dolphins living in 
a community of Doubtful Sound, a fjord in New Zealand. An edge in-
dicates their frequent association. The dataset has 62 nodes and 159 
edges. For this dataset, the dolphins were observed between 1994 and 
2001. The lesmis dataset represent a co-appearance network (igraph 
object2) of characters in the novel Les Miserables (written by a French 
writer Victor Hugo). Its vertices are the novel characters and an edge 
indicates that the two characters appear together in the same chapter at 
least once. Vertex attributes for this graph are unique identifier, a vertex 
number between 1 and 77, and label, i.e., the character’s name. The 
dataset facebook combined is extracted from actual users of the facebook. 
The dataset has 87933 edges between 4038 nodes. The links in this data 
do not carry any weight. The air traffic control data is constructed from 
the USA’s FAA (Federal Aviation Administration) National Flight Data 
Center (NFDC), consisting of preferred routes. Nodes in this network 
represent airports or service centers and links are created from strings of 
preferred routes recommended by the NFDC. This network has 1226 
vertices and 2615 edges. The moreno health dataset is a directed network 
created from a survey data. Each survey participant listed her/his five 
best female and five male friends. A node in the data represents a student 
and an edge between two students shows that the left student (node) 
chose the right student (node) as a friend. Higher edge weights indicate 
more interactions. The wiki-vote dataset is extracted from Wikipedia 
using its dump page edit history by extracting all administrator elections 
and vote history data. The dataset has 7115 nodes and 103689 edges. 
The 192bit and 176bit are taken from the interactive data and network 
data repository having 14000 and 7000 nodes, respectively. The citation 
data contains 27400 nodes and 705084 edges representing the number 
of citations from the scientific papers represented as nodes. The GEOM 
data is a collaboration network with 7343 nodes representing different 
authors and 11898 edges, which represents the joint work of multiple 
authors. The dataset enron is an email network having 36692 nodes and 
183831 edges. The GRQC CNetwork (General Relativity and Quantum 
Cosmology collaboration network) data comprises of 5242 nodes and 
14496 edges. The nodes in this dataset represent the authors and the 
edge between two authors represents collaborating authors. The CM 
Cnetwork, AP Cnetwork, and EP Cnetwork datasets represents collabora-
tion network is from the e-print arXiv and covers scientific collabora-
tions between authors papers submitted to condense matter physics, 
astro physics, and high energy physics-phenomenology categories, 
respectively. 

4.2. Other competing approaches 

The random walk-based clustering solution presented in this work is 
compared with seven closely related state-of-the-art methods. These 
include: Walktrap [16], Pairwise Clustering (PC) [26], Personalized 
page rank clustering (PPC) [38], Mixing Time of Random Walk (MTRW) 
[33], Limited Random Walk (LRW) [6], Genetic Algorithm Krill Herd for 
graph clustering (GAKH) [32], and Density-Based Clustering of Large 
Probabilistic Graphs (DBCLPG) [34]. The choice of these methods is 
made based on close relevance mainly decided by the utility of graphs, 
random-walk, or friend-of-friend concept. Table 3 lists a summary of the 
competing methods with respect of various relevance factors. As shown 

in the table, all the competing methods addresses graph clustering and 
57 % of these, i.e., 4 are the graph clustering methods that utilize 
random-walk. In terms of recency, these seven methods can be divided 
into three brackets; latest, established, and classic. It can be seen from 
the table that 28 % of the competing methods are from the latest bracket, 
28 % are from the latest group, and 42 % of the comparison methods are 
the classic ones. Following is a brief description of these seven clustering 
methods. 

4.2.1. Limited random walk (LRW) 
The limited random walk [6] utilizes inflation and normalization 

applied at each step to cluster a graph. Applying inflation operator to the 
matrix causes it to increase the existing small differences. The approach 
is time-homogeneous Markov chain procedure. The procedure uses both 
local and global clustering techniques. 

4.2.2. Pairwise clustering (PC) 
Pairwise clustering [26] is based on merging two points that are 

closely related to each other according to their characteristics. This 
process of merging the clusters continues until all points are traversed or 
a stopping criteria is met. 

4.2.3. Personalized page rank clustering (PPC) 
Personalized page rank clustering [38] combines modularity func-

tion and random walk to precisely determine the clusters of a graph. The 
method is a top down approach which recursively partitions subgraph 
until modularity gain is finished. 

4.2.4. Genetic algorithm krill herd for graph clustering (GAKH) 
The work in [32] present a graph clustering algorithm based on KH 

and GA. It adopts the cycle and GA operators, using swarm intelligence, 
and utilizes the krill’s movements. 

4.2.5. Mixing time of random walk (MTRW) 
MTRW [33] is a randomized algorithm that extracts clusters from a 

graph according to a specified metric. It finds the locally optimal solu-
tions. The proposal is distributed and asynchronous. 

4.2.6. Density-based clustering of large probabilistic graphs (DBCLPG) 
The DBCLPG method [34] extracts subgraphs G` from an input graph 

G, such that G` ⊆ G and the density of G` is above a certain threshold. 

Table 3 
Summary of the competing methods.  

Competing 
method 

Year Citations 
(April 
2020) 

Utilizes 
graphs? 

Utilizes 
random 
walk? 

Utilizes 
friend-of- 
friend 
concept? 

Walktrap [16] 2005 1510 √ √ x 
Pairwise clustering 

(PC) [26] 
2007 464 √ x x 

Personalized page 
rank clustering 
(PPC) [38] 

2013 38 √ √ x 

Mixing Time of 
Random Walk 
(MTRW) [33] 

2014 11 √ √ x 

Limited random 
walk (LRW) [6] 

2016 12 √ √ x 

Genetic algorithm 
krill herd for 
graph clustering 
(GAKH) [32] 

2019 . √ x x 

Density-Based 
Clustering of 
Large 
Probabilistic 
Graphs 
(DBCLPG) [34] 

2019 6 √ x √  

2 http://igraph.org/r/doc/ 
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They exploit the density of the extracted clusters in order to keep them 
growing. 

4.2.7. Walktrap 
The work in [16] is a random-walk-based clustering technique that 

computes distance between two nodes using a fixed number of steps 
utilizing the probability matrix. The method walktrap captures com-
munity structure in a network which can be used in an agglomerative 
clustering algorithm. 

4.3. Evaluation metrics 

The clustering results of the competing approaches are evaluated 
using six clustering evaluation metrics, namely: Davies Bouldin index 
(DBI), Dunn index (DI), Calinski-Harabasz index (CHI), silhouette co-
efficient (SC), modularity index, and normalized cut. 

4.3.1. Davies-Bouldin Index (DBI) 
DBI validates the inter-cluster and intra-cluster similarity of the 

nodes in the formed clusters. The index validates the clusters based on 
dimensions inherent to the dataset. Mathematically, DBI is computed 
using Eq. (3). Where, n represents the number of clusters. The variable 
σi represents the average distance of all the nodes in the cluster to the 
center of the cluster ci. The value of d(ci, cj) is the distance between 
centroids of the two clusters ci and cj. The DBI ranges in [0, ∞]. The 
value of DBI closer to 0 indicates better clustering formation. 

DBI =
1
n
∑n

i=1
max

i∕=j

(
σi + σj

d(ci, cj)

)

(3)  

4.3.2. Dunn index (DI) 
DI is another evaluation metric for the validity of clustering results. It 

checks how dense the cluster is with-in and how well it is separated from 
other clusters. Eq. (4) shows the mathematical formulation of DI. Where 
d(i,j) denotes the distance between two clusters, while d’(k) represents 
the distance between the nodes within the cluster. For a given clustering 
formation, higher values of DI indicate better clustering. 

DI = min
1≤i≤n

⎧
⎨

⎩
min

1≤j≤n,i∕=j

⎧
⎨

⎩

d(i, j)
max
1≤k≤n

d’(k)

⎫
⎬

⎭

⎫
⎬

⎭
(4)  

4.3.3. Calinski-Harabasz index (CHI) 
Calinski-Harabasz index measures the clustering quality by gauging 

the separation between formed groups. Eq. (5) lists the formula to 
compute CHI. 

CHI =
Sb/(k − 1)
Sw/(n − k)

(5)  

Where, Sb is the squared sum of inter-cluster distance, Sw is the squared 
sum of intra-cluster distance, k is the number of clusters, and n is the 
number of objects (nodes in this case). Higher CHI values indicate better 
clustering. 

4.3.4. Silhouette coefficient (SC) 
This clustering validation metric (Eq. (6)) checks nodes’ similarity 

with all other nodes in its cluster and it also checks dissimilarity of the 
node from the members of other clusters. The value of SC is in the range 
[-1, 1]. The clustering formations having higher SC value have more 
cohesion that those having lower SC values. Mathematically, silhouette 
coefficient can be written as follows. 

SC =
1
N

∑N

i=1
{

b(i) − a(i)
max{a(i), b(i)}

} (6)  

Where, b(i) is the average dissimilarity of node i with all the other nodes 

in the other clusters, i.e., inter-cluster dissimilarity. The value a(i) is the 
average dissimilarity of node i from the other nodes within the cluster, i. 
e., intra-cluster dissimilarity. 

4.3.5. Modularity index 
Modularity index finds the modular strength of a cluster in a 

network. It is computed using Eq. (7). Higher modularity value indicates 
better clustering value. 

Q =
∑k

i=1
(eii − ai2) (7)  

Where, ai is the percentage of edges with at least one end in module I, 
ai=|{(u,v) : u ∈ Vi, (u,v)∈ E}|/|E|. The term eii show percentage of edges 
in module i, eii=|{(u,v) : u ∈ Vi, v ∈ Vi, (u,v)∈E}| / |E|. 

4.3.6. Normalized cut 
It is another metric to find the partitions of graphs with minimum 

connections between two clusters. The optimal bi-partitioning of a graph 
is the one that returns the minimum cut value. It is computed using Eq. 
(8). 

Ncut(A,B) =
cut(A,B)

asso(A,V)
+

cut(A,B)
asso(B,V)

(8)  

Where, cut(A,B) =
∑

u ∈A, v ∈B
w(u, v) and asso(X,V) =

∑

u∈X, t∈V
w(u, t) is the 

total connection from nodes in X to all nodes in the graph. 

4.4. Comparison 

This section presents the comparison of the proposed approach, this 
point onwards referred to as Pseudo-Guided Random Walk (PGRW). The 
comparison here is made with seven baseline/state-of-the-art related 
clustering methods using the 18 benchmark datasets. Seven standard 
evaluation metrics are used here, namely, DBI, DI, CHI, SC, modularity 
index, normalized cut, and execution time. The obtained results are 
grouped here metric wise. 

4.4.1. Comparison based on DBI 
The DBI is a stranded clustering validity index to gauge clustering 

quality. For a clustering formation produced by a method, the DBI 
represents a numeric value, where the lesser value of this index repre-
sents better clustering formation. The DBI computed for the eight 
computing methods is shown in Fig. 4. It can be seen from the results 
that the proposed methods perform better than others on nine (out of 
18) datasets achieving minimum DBI value. The datasets for which 
PGRW performed better include, dolphins, moreno health, facebook com-
bined, 176bit, EP Cnetwork, 192bit, AP Cnetwork, citation, and ENRON. 
The clustering method Walktrap has been the second best by achieving 
minimum DBI value over 7 out of the 18 datasets. The method LRW 
performs better on two datasets, i.e., karateclub and mcldata. The 
DBCLPG clustering method has performed the least based on the DBI by 
achieving the maximum DBI value (indicating inappropriate clustering 
formation) over eight datasets. 

4.4.2. Comparison based on DI 
The DI is the second cluster validity index used here for comparing 

performance of the eight clustering methods. The DI computes a 
numeric value for a given cluster formation, where a higher DI value 
indicates better clustering as compared to a clustering formation for 
which the computed DI is low. The DI values obtained for the eight 
competing methods is shown in Fig. 5. Based on this metric, the pro-
posed approach has performed better on protein interaction, facebook 
combined, GRQC Cnetwork, wiki-Vote, and EP Cnetwork datasets. As 
shown in the figure, PPC, DBCLPG, and Walktrap perform equally and 
achieves second best DI value (indicating appropriate clustering 
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Fig. 4. Results of the eight competing methods using DBI.  

Fig. 5. Results of the eight competing methods using DI.  

Fig. 6. Results of the eight competing methods using SC.  
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formation) on three datasets each. Whereas, the clustering method 
GAKH performed best on two datasets (i.e., lesmis and mcldata) and 
MTRW has better performance only on the air traffic control dataset. 

4.4.3. Comparison based on SC 
The SC is a standard validity index used widely to evaluate clustering 

quality. The value of SC ranges between -1 to 1, where the SC value close 
to 1 indicates more cohesive clustering. An experiment has been per-
formed that computes the SC value of each of the eight competing 
methods over the 18 benchmark datasets. The results of this are shown 
in Fig. 6. The figure shows that the proposed approach performs better 
only on AP Cnetwork and citation datasets based on the SC metric. Based 
on the results in Fig. 6 the DBCLPG method performs better than others 
by achieving maximum SC value over six datasets, namely, air traffic 
control, protein Interaction, moreno health, GRQC Cnetwork, GEOM, and 
CM Cnetwork. Performance of LRW and PPC is the second best as they 
obtain higher SC values on three datasets each. Whereas, the perfor-
mance of the proposed method, i.e., PGRW, and two other approaches is 
ranked 3rd based on SC as they obtain better SC value than others on two 
datasets each. Clustering is an unsupervised learning task and gauging 
the quality of results in the absence of the ground truth is challenging. 
Performance evaluation using one metric may differ than the other in 
such scenario. Therefore, in all such cases, multiple metrics are utilized 
to make an informed quantitative decision about the performance. 

4.4.4. Comparison based on CHI 
The CHI is the fourth cluster validity index used in this work for 

evaluating the clustering quality obtained by the proposed approach and 
the seven state-of-the-art methods used for comparison. Like other val-
idity indices, the CHI is also a numeric value where a higher CHI value 
indicates better clustering formation in comparison to a lower value. An 
experiment has been performed that computes the CHI value of each of 
the eight competing methods over the 18 benchmark datasets. The re-
sults of this are shown in Fig. 7. The results suggest that PGRW perform 
better than others on the eight datasets. These datasets include dolphins, 
protein interaction, moreno health, facebook combined, GRQC Cnetwork, AP 
Cnetwork, CM Cnetwork, and citation. Using CHI as a metric, the Walktrap 
clustering method performs the second best by achieving higher CHI 
values than others on three datasets. LRW has performed better than 
others in three cases. The clustering methods, PPC, GAKH, DBCLPG, and 
MTRW perform better than other competing approaches in one case 
each. 

4.4.5. Comparison based on modularity index 
Modularity index is used to find the modular strength of a cluster in a 

network. It is utilized here as the fifth cluster validity index. The 
modularity index values computed for the eight computing methods are 
shown in Fig. 8. The results suggest that the proposed approach performs 
better than other on eight datasets, namely, protein interaction, moreno 
health, facebook combined, GRQC Cnetwork, wiki-Vote, EP Cnetwork, CM 
Cnetwork, and citation. The Walktrap and LRW are ranked 2nd and 3rd 
respectively by performing better than others on 6 and 4 dataset, 
respectively. 

4.4.6. Comparison based on normalized cut 
The normalized cut is a standard metric majorly used in graph theory 

to find the partitions of graphs with minimum connections between two 
clusters. An experiment has been performed where each of the 
competing methods is executed on the 18 benchmark datasets and 
normalized cut of the resulting clustering formations is computed 
accordingly. The normalized cut is represented by a numeric value 
where the lesser value of this metric indicates better clustering forma-
tion. The results of this experiment are shown in Fig. 9. These results 
suggest that the Walktrap method performs better in case of normalized 
cut by achieving better value of this metric on nine datasets, i.e., dol-
phins, lesmis, protein interaction, moreno health, facebook combined, GRQC 
Cnetwork, 176bit, 192bit, citation, and ENRON. Whereas, PGRW and LRW 
are ranked second here as they perform better than other clustering 
approaches in two cases each. The DBCLPG is the least performing 
clustering method based on the normalized cut as it could not get the 
minimum value in comparison to others on any of the 18 datasets. 

4.4.7. Comparison based on execution time 
A comparison of the eight competing methods is also performed 

based on execution time. The eight clustering methods are executed on 
all 18 benchmark datasets and the execution time of each is recorded. 
Although the asymptotic time complexity of the competing methods is 
listed in Table 1, however, the actual execution may vary majorly 
depending on the dataset represented as a graph, its number of nodes 
and the number of edges. It is worth mentioning here that two of the 
competing methods, i.e., LRW and PPC are parallel computing-based 
clustering approaches and they will have a clear advantage in execu-
tion time over all other methods. For the sake of completeness, execu-
tion time of these two methods is also reported. Fig. 10 shows the 
execution time of the eight competing methods. The proposed method 
performs better than others (in terms of time) on karateclub, dolphins, 
lesmis, and mcldata. On the remaining datasets, either LRW or PPC 

Fig. 7. Results of the eight competing methods using CHI.  
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consumes minimum execution time. These two are the parallel 
programming-based methods and comparing their execution time with 
the other six methods will not be rational, therefore the remaining re-
sults are explained after excluding LRW and PPC. After this normaliza-
tion, the Walktrap method consumes less time than other clustering 
methods considered in this work on 11 datasets. Whereas, the proposed 
method consumes minimum time on five datasets and is ranked 2nd. 
However, if the average of the time consumed by all the competing 
methods over 18 datasets is computed, the difference between Walktrap 
and PGRW is about 1.25 s only. The difference between the average time 
(on the 18 datasets) consumed by six other methods and PGRW and 
Walktrap is more than 13 s. 

4.5. Performance comparison using other weight assignment methods 

In addition to the evaluation of the proposed technique based on the 
notion of common neighbors, an experiment is performed using three 
weight assignment methods. These include, friends of friend (FoF) 
method, Jaccard index (JI), and Pearson correlation coefficient (r) [41]. 

The common neighbor notion also called the FoF is already explained in 
the preceding section. The Jaccard’s index in Eq. (9) computes dissim-
ilarity between sample sets. The value of JI is obtained by dividing the 
difference of the sizes of the union and the intersection of two sets by the 
size of the union. Its value ranges between 0 and 1. 

JI (A,B) =
|A ∩ B|
|A ∪ B|

(9) 

The r (Eq. (10)) is a measure of the linear correlation between two 
variables X and Y. The value of r ranges between +1 and − 1, where 1 is 
total positive linear correlation, 0 is non-linear correlation, and − 1 is a 
total negative linear correlation. 

r =

∑
XY − nXY

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

X2 − nX2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
Y2 − nY2

√ (10) 

Fig. 11 shows the result of the this experiment by plotting values of 
DBI, DI, CHI, and SC for the air traffic control and yeast datasets using 
FaF, JI, and r to assign weights. It can be seen that FoF performs better 

Fig. 8. Results of the eight competing methods using modularity index.  

Fig. 9. Results of the eight competing methods using normalized cut.  
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than the other two indices. However, the performance difference be-
tween JI and FoF is marginal and JI shows the second best results. The 
proposed approach actually guides the random walk in forming appro-
priate clusters. Therefore, there can be instances where JI’s performance 
is better than FoF if the pseudo-guided random walk is executed multiple 
times. The reason for JI and FoF performing so closely is the fact that 
both actually computes cohesions between two nodes of a graph to es-
timate similarity. 

5. Statistical significance 

In the statistical analysis, the term significant means something quite 
different. It is important to see the significant difference between the 
proposed clustering approach and the seven other methods. Therefore, 
the paired sample t-test is used here to see if the outcome of the proposed 
solution is statistically significant as compared to the seven related state- 
of-art algorithms. For this, first, the null hypothesis (H10) and its alter-
native (H1A) hypothesis are defined in Table 4. The performance eval-
uation of the proposed work with competing algorithms is based on the 
six cluster validity metrics. Therefore, the statistical test is performed for 

each of these criteria. The level of significance α, a probability to reject 
the null hypothesis, is set to 5%. Where, 95 % confidence level (1-α) 
refers to the probability of accepting the null hypothesis. The degree of 
freedom df presents the total number of datasets, i.e., 18. The proba-
bility value (i.e., p-value) determines the evidence to reject the null 
hypothesis. A small p-value show more evidence in favor of the alter-
native hypothesis. 

This section statistically investigates if the proposed solution does 
not perform better using the six cluster validity indices, i.e., DBI, DI, SC, 
CHI, modularity index, and normalized cut. For this, t-statistic is 
computed for each pair. Therefore, first, a score is assigned to each 
approach for all datasets using the six cluster validity indices. The score 
shows that an approach performs better on how many metrics out of the 
six cluster validity indices for a given dataset. For example, if an 
approach performs better for three validity indices on a given dataset, 
then the score will be 3 out of 6. Table 5 present all assigned scores. The 
result of the paired sample t-test is shown in Table 6 using the data 
mentioned in Table 5. Table 6 describe the significant difference be-
tween the PGRW and PC [t(17) = 4.852507, p < 0.05)], PPC[t 
(17) = 2.9676999, p < 0.05)],GAKH[t(17) = 3.9392934, p < 0.05)], 
DBCLPG [t(17) = 2.7301305, p < 0.05)], and MTRW [t 
(17) = 3.1314864, p < 0.05)]. Based on the obtained p-value, the null 
hypothesis is rejected in favor of the alternative hypothesis. However, 
there is no significant difference between PGRW and LRW [t 
(17) = 1.4995695, p = 0.1520677)], Walktrap [t (17) = 1.1149124, p =
0.28040188). These methods perform, very close to each other. 

Fig. 10. Results of the eight competing methods using execution time.  

Fig. 11. Performance comparison using other weight assignment methods.  

Table 4 
Null hypotheses with their alternatives.  

Null hypotheses Alternate hypothesis 

H10: The proposed method, PGRW, does 
not perform better on the six cluster 
validity indices.  

H1A,: The proposed method, PGRW, does 
perform better on the six cluster validity 
indices.   
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6. Discussion 

Many real-world problems generate data that has intrinsic relation-
ship between their entities. Such data can be represented as a graph [42, 
43]. This is because graphs provide a rich mapping of many real-world 
problems for data presentation to the modern computing devices. It 
consists of nodes and edges with their domain specific interpretation. 
For instance, nodes in a social network can represent persons, in a 
communication networks these can be computers or a server, in bio-
logical experiment nodes may represent proteins. Finding communities 
in such large graphs is an active area of research. This task is commonly 
known as clustering. 

6.1. Brief synopsis 

This work has addressed the problem of clustering graphs using a 
random walk-based approach. The random walk here was directed by a 
pseudo-guidance mechanism towards better clustering formation. The 
unsupervised nature of the clustering task makes the job challenging. 
The goal here was to form communities in a graph based on common-
alities, instead of utilizing the simple link-based mechanism. Addition-
ally, the relationship between two nodes in a graph is not always 
reciprocal. For example, in a social network, if a celebrity is followed by 
a fan then it does not mean that the fan is also being followed by the 
celebrity. This example is also relevant for a citation graph. Therefore, 
additional parameters linking nodes together are always required. 
However, this interpretation is usually domain specific. The solution 
presented in this work (PGRW) utilized the friends-of-friends concept to 

assign weights to the graph’s edges. Later, the edges’ weights were 
utilized to find node weight. The node having maximum weight was 
marked as the seed node to grow the clusters. The cluster growth was 
managed using random walk. However, this walk was guided towards 
the nodes where a non-zero edge strength was available. Random walk 
has produced good results in studies like [44] and [16]. Guiding the 
random walk procedure here, further improved the results. The pro-
posed approach in this work was compared with seven graph clustering 
methods, namely, limited random walk (LRW), pairwise clustering (PC), 
personalized page rank clustering (PPC), GAKH (genetic algorithm krill 
herd) graph clustering, mixing time of random walks, density-based 
clustering of large probabilistic graphs, and Walktrap. The comparison 
here was based on six cluster validity and other indices. These included: 
Davies-Bouldin index (DBI), Dunn index (DI), Silhouette coefficient 
(SC), Calinski-Harabasz index (CHI), modularity index, and normalized 
cut. Further, the experiments were performed using 18 benchmark 
datasets, namely, karateclub, dolphins, lesmis, mcldata, air traffic control, 
Protein interaction, moreno health, facebook combined, GRQC Cnetwork, 
176bit, wiki-Vote, GEOM, EP Cnetwork, 192bit, AP Cnetwork, CM Cnet-
work, citation, and ENRON. Utilization of six validity indices, execution 
time, and 18 datasets helped in averaging out the results and reach 
generalized findings. 

6.2. Results analysis 

This proposal was compared with seven related state-of-the-art 
clustering approaches using 18 benchmark datasets based on time and 
six cluster validity indices. The proposed solution performed better than 

Table 5 
Ranking of the competing approaches.  

Datasets PGRW LRW PC PPC GAKH DBCLPG MTRW Walktrap 

Karateclub 0 0.666667 0 0.166667 0 0 0.166667 0 
Dolphins 0.333333 0.166667 0 0.166667 0 0 0.166667 0.166666667 
Lesmis 0 0.5 0 0.166667 0.166667 0 0 0.166666667 
Mcldata 0 0.5 0 0.333333 0.166667 0 0 0 
Air traffic control 0 0.333333 0 0.166667 0 0 0.166667 0.333333333 
Protein Interaction 0.5 0 0 0 0 0.166667 0.166667 0.166666667 
Moreno health 0.5 0 0 0 0 0.166667 0.166667 0.166666667 
Facebook combined 0.666667 0 0.166667 0 0 0 0.166667 0 
GRQC Cnetwork 0.5 0 0 0 0 0.166667 0.166667 0.166666667 
176bit 0.166667 0 0 0 0 0.333333 0 0.5 
Wiki-Vote 0.5 0 0 0.166667 0 0 0.166667 0.166666667 
GEOM 0.333333 0 0 0 0 0.166667 0.166667 0.5 
EP Cnetwork 0.333333 0.333333 0 0.166667 0.166667 0 0 0.5 
192bit 0.166667 0 0 0 0 0.333333 0 0.166666667 
AP Cnetwork 0.5 0 0 0 0 0.166667 0 0.166666667 
CM Cnetwork 0.333333 0 0 0 0 0 0 0.333333333 
Citation 0.666667 0.166667 0 0 0 0 0 0.166666667 
ENRON 0.166667 0.166667 0 0.166667 0.166667 0.166667 0 0.166666667 
Average 0.314815 0.157407 0.009259 0.083333 0.037037 0.092593 0.083333 0.212962963 
Std. dev. 0.227869 0.217474 0.039284 0.103058 0.071299 0.117465 0.085749 0.159713342  

Table 6 
Paired sample t-test results.  

Paired differences T df Sig. (2-tailed)  

Mean Std. deviation Std. error mean 
95 % confidence interval of the difference      

Lower Upper 

Pairs         
PGRW-LRW 0.1574074 0.0103956 0.0024503 0.1522373 0.1625775 1.4995695 17 0.1520677 
PGRW-PC 0.3055556 0.1885857 0.0444501 0.2117659 0.3993452 4.852507 17 0.0001494 
PGRW-PPC 0.2314815 0.1248116 0.0294184 0.1694087 0.2935543 2.9676999 17 0.0086284 
PGRW-GAKH 0.2777778 0.1565707 0.0369041 0.1999102 0.3556453 3.9392934 17 0.0010576 
PGRW-DBCLPG 0.222222 0.110404 0.0260225 0.1673148 0.2222222 2.7301305 17 0.0142488 
PGRW-MTRW 0.231481 0.14212 0.033498 0.1608006 0.3021623 3.1314864 17 0.0060798 
PGRW-Walktrap 0.101852 0.068156 0.016065 0.0679557 0.135748 1.1149124 17 0.2804019  
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the other clustering methods on 55.55 % of the datasets based on DBI as 
the validity index. For the same metric, the second best performer was 
Walktrap having better performance in 38 % instances. Using the DI as a 
metric, the proposed solution performed better than others in the ma-
jority of the cases, i.e., 27.33 % instances. The second best performance 
has been observed for two methods, namely, PPC and Walktrap having 
performed better in 16.66 % cases each. The results obtained for SC as a 
cluster validity index show somewhat different ranking in comparison to 
the ones obtained using DBI and DI. Here, DBCLPG has been the best 
performer achieving the optimum clustering formation in 33.33 % cases. 
This is followed by LRW and PPC methods in the second place. The 
PGRW and Walktrap methods which got 1st or 2nd slot based on DBI and 
DI, share third position based on SC having better performance in 11.11 
% instances each. 

While using CHI as a cluster validity index, the PGRW has performed 
better than others in majority cases, i.e., in 44.44 % instances. Whereas, 
the Walktrap has performed better in 22.22 % cases thus achieving 
second slot. The clustering method LRW is the third best based on CHI by 
producing optimum cluster formation in 16.66 % instances. Normalized 
cut is a graph specific quality measure and based on it the Walktrap has 
performed better on the majority of the datasets, i.e., in 55.55 % cases. 
Whereas, PGRW has been in the second place with better performance 
on 11.11 % datasets. Finally, based on modularity index, the proposed 
approach again performed better in 44.44 % cases and this achieves first 
rank. Likewise, the previous indices, Walktrap has been the second best 
performer here by achieving better results than others in 33.33 % cases. 
Fig. ranking lists a ranking score achieved by each of the competing 
methods on the six cluster validity indices over the 18 datasets. A higher 
rank score indicates better overall performance. It can be seen that the 
proposed PGRW clustering method performance is better in the majority 
of the cases. The method Walktrap has been the second best and its 
performance is very close to the proposed method. 

6.3. Synthesis 

The proposed approach addressed the task of clustering graphs 
keeping in view the time and space constraints. The current proposal 
utilized an adjacency matrix to store the graph. This causes the space 
complexity of PGRW to be O(n2). Where, n is the number of nodes in the 
graph. However, internally each cell of the adjacency matrix is of a 
structure type to store clustering related information about each node. 
This has a constant time effect on the storage requirement. Therefore, 
the space requirement of PGRW remains O(n2). The overall execution 
time of the proposed approach is dominated by the O(cn2) bound. 

Where, n is the number of nodes in the graph and c is the number of 
clusters. The PGRW approach initiated a walk from the highest degree 
node. The path of the walking agent was a pure random process limited 
to the nodes connected via edges having weight greater than zero. This 
process has a certain probability that once a walk has been initiated, it 
may have different results if repeated. This will cause slightly different 
cluster formation if the process is repeated. This is a limitation of the 
current proposal. However, it is also true for other random walk-based 
clustering methods. Fig. 12 shows the rank score of the three 
competing approaches for various numbers of nodes. The execution time 
of PGRW is slightly at a higher side, however, PGRW produces 46 % 
better clusters consuming 5% addition time. Experiments performed on 
larger datasets suggest that the performance of the proposed approach is 
comparable to other methods (excluding those written using parallel 
programming paradigm). However, it must be mentioned here that the 
performance of the proposed work is not only dependent on the nodes in 
the input graph, but it varies due to the graph density. For example, for a 
graph with 1000 nodes and edge connection density around 60 % the 
proposed approach may take less execution time than for a graph with 
600 nodes and edge connection density around 95 %. This is because the 
random walking agent jumps from one node to the other using the edges 
resulting in increased execution time. The closest competitor to the 
proposed method has been the Walktrap methods and the same has been 
confirmed through the t-test. 

7. Conclusion 

This work proposed a novel random walk-based approach to cluster 
the data represented as a graph. Extracting clusters from big graphs is an 
active area of research. The proposed solution addressed this problem by 
presenting a pseudo-guided random walk procedure to find strongly 
connected groups. The solution presented here is named Pseudo-Guided 
Random Walk (PGRW). Initially, the input dataset was transformed into 
a graph where nodes represented the objects and edges represented the 
link between them. The PGRW started with finding the significance of 
connections between nodes by identifying their common friends in the 
network. Instead of the raw edge weight mentioned in the datasets, the 
count of such common friends, called the friends-of-friends, was then 
placed as an edge weight between two nodes. This enabled to identify 
strongly connected nodes based on commonalities. These weights were 
then utilized to find the most influential node in the graph. The pseudo- 
guided random walk started from the node having maximum weight. 
The walking agent randomly picked any of its neighbours to be visited, 
however, this choice was limited to only those nodes where the edge 

Fig. 12. Ranking scores of the eight competing methods.  
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weigh based on friends-of-friends concept was greater than or equal to a 
threshold. The traversed neighbours in this manner were then added to 
the same cluster. This process stopped when the agent could not find any 
node to visit. The visited nodes were then extracted from the original 
graph and the same process was repeated for the rest of the network. The 
proposed approach was compared with seven closely related graph 
clustering methods from the same domain, namely, limited random 
walk, pairwise clustering, personalized page rank clustering, GAKH 
(genetic algorithm krill herd) graph clustering, mixing time of random 
walks, density-based clustering of large probabilistic graphs, and 
Walktrap. The comparison was made using six cluster validity and other 
indices; Davies-Bouldin index (DBI), Dunn index (DI), Silhouette coef-
ficient (SC), Calinski-Harabasz index (CHI), modularity index, and 
normalized cut. For experiments, 18 real-world benchmark datasets 
were utilized. Results suggested a better performance of the proposed 
approach in the majority of the cases. 

The random walk-based approaches have shown promising results in 
clustering complex large networks. This work can be extended in mul-
tiple ways in the future. Parallel computing paradigm is an option where 
multiple walking agents can be initiated simultaneously. This shall 
produce results quickly. The current proposal has assigned edge weights 
based on the friends-of-friends concept which again utilizes common 
friends using connectivity. In the future, these common friends can be 
identified using various attributes of the graph other than the connec-
tivity aspact. There are many optimization approach available, like ge-
netic algorithms, ant colony algorithm, and evolution strategy. In the 
future, it would be interesting to see how these techniques optimizes the 
clusters extracted from a graph using pseudo-guided random walk. 
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